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Abstract

Bubbles are believed to arise only under special circumstances, and hence to be fragile.
Kocherlakota (2008) showed, however, that with endogenous solvency constraints deriving from
limited commitment, as in Alvarez and Jermann (2000), and with complete markets, bubbles
are a robust feature. In fact, an arbitrary bubble component can be injected in equilibrium
asset prices, without affecting the consumption choices of the agents and the pricing kernel.
We extend the scope of Kocherlakota’s (2008) results to economies with incomplete markets,
and show that any non-negative process that does not alter the set of pricing kernels can be
injected in an equilibrium. Moreover, if the assets represent shares of firms that are allowed
to trade, bubbles are a natural consequence of firms believing that they can manipulate their
share price through an active payout policy. Active trading by firms can lead to equilibria
equivalent, from the point of view of consumption allocations, to an equilibrium where firms’
trading is disallowed, but where share prices have a bubble component. The total value of the
firm can be preserved or not, hence the Modigliani-Miller theorem can fail.

1 Introduction

A bubble is defined as the price of an asset in excess of the discounted present value of its dividends.
While developing (collapsing) price bubbles are a favorite explanation for stock market run-ups
(crashes), their existence in standard stochastic dynamic general equilibrium models is possible
only under special conditions. Santos and Woodford (1997) showed that bubbles can be ruled out
on assets in positive supply, when the present value of aggregate consumption is finite.1 This is
always the case if, for example, there is at least an asset that grows at a (long-run) rate greater or
equal to the growth rate of aggregate consumption. The outline of their argument is that optimizing
agents do not allow their financial wealth to exceed the present value of their future consumption.
Thus the aggregate financial wealth becomes arbitrarily small in present value terms, which is
incompatible with the existence of a bubble on an asset in positive supply.

In a representative agent economy, Montrucchio and Privileggi (2001) corroborate the results of
Santos and Woodford (1997) and show that under mild assumptions on agent’s preferences, bubbles
∗Corresponding author. Rice University, MS 22, PO Box 1892, Houston, TX 77251-1892. E-mail:

camelia@rice.edu
1 They prove that there exists a discount factor (pricing kernel) compatible with the absence of arbitrage oppor-

tunities such that the fundamental value of the asset computed under this discount factor equals its price. Moreover,
if the agents are sufficiently impatient, in the sense that they are always willing to trade a fixed fraction of all future
consumption in exchange for the current aggregate endowment, then the price of an asset in positive supply is always
equal to its fundamental value, irrespective of the choice of a discount factor compatible with the absence of arbitrage.
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cannot exist. The absence of bubbles follows even without assuming the existence of a sufficiently
productive asset.

The apparent fragility of bubbles was recently turned on its head by Kocherlakota (2008). His
insight was that arbitrary bubbles can be injected in asset prices, while leaving agents’ consumption
unchanged, as long as the solvency constraints of the agents are allowed to be adjusted upwards
by their initial endowment of the assets multiplied with the bubble term. The modified solvency
constraints bind in exactly the same dates and states. The introduction of a bubble gives consumers
a windfall proportional to their initial holding of the asset, which can be sterilized, leaving their
budgets unaffected, by an appropriate tightening of the solvency constraints. He refers to this result
as “the bubble equivalence theorem”. Assuming that agents have the option to default on debt and
receive an outside option, Alvarez and Jermann (2000) build a theory of endogenous constraints
by arguing that the markets select the largest credit limits that prevent default.2 It turns out
that the modified solvency constraints resulting from the injection of a bubble are the endogenous
solvency constraints allowing for maximal credit expansion and preventing default. Hence bubbles
are a robust and intrinsic feature of economies where solvency constraints arise endogenously from
enforcement limitations. In fact, endogenous solvency constraints à la Alvarez and Jermann (2000)
are determined only up to a bubble. This was shown by Hellwig and Lorenzoni (2009) for the
case when the default punishment is the interdiction to borrow, and extended by Bejan and Bidian
(2010) to the general case where upon default agents receive an arbitrary exogenous continuation
utility.

A major limitation of Kocherlakota’s (2008) results is the assumption that that agents can trade
in a full set of state-contingent claims to consumption next period, in addition to the existing finite
number of infinitely lived securities. Hence one might infer that bubble injections are associated
to knife-edge situations, and they might not apply even to economies with dynamically complete
markets (rather than Arrow-Debreu complete).

We prove that the bubble equivalence theorem holds even when markets are incomplete, making
Kocherlakota’s (2008) results robust. Incomplete markets models with limited enforcement warrant
study since they can capture better the limited extent of risk-sharing and the positive relation
between credit limits and income in the data (Ábrahám and Cárceles-Poveda 2010). We show
that any positive process that does not distort the set of pricing kernels can be injected in the
asset prices as a bubble. Gain processes associated to a large class of trading strategies satisfy this
condition. We also allow for more general punishments after default than in Kocherlakota (2008).
In particular, we cover the case where upon default the agents are forbidden to carry debt (Bulow
and Rogoff 1989, Hellwig and Lorenzoni 2009). For this outside option, the agents’ punishment
continuation utilities after default depend on asset prices, since lending is still allowed, and could
be affected by a bubble injection. It turns out, however, that this is not the case.

Next we allow firms to trade and extend the results of DeMarzo (1988) to infinite horizon
economies. Thus we show that consumers can undo the effects of firms’ trading by adjusting their
portfolio holdings and keeping their consumption unaltered. However, with an infinite horizon,
bubbles are a natural consequence of firms believing that they can manipulate their share price by
changing their payout policy. While DeMarzo (1988) ignored the limited liability of shareholders, we
give conditions under which firms’ trading results in positive dividends and prices. Active trading
by firms can lead to equilibria equivalent from the point of view of consumption allocations to an

2Due to limited enforceability of contracts, agents can default on their debt at any date and state and leave the
economy, receiving a fixed continuation utility that can be date and state dependent. The solvency constraints are
set in each period to the maximum level so that repayment is always individually rational given future debt limits.
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equilibrium where firms’ trading is disallowed, but where share prices have a bubble component
even though no bubble existed under no-trading. We construct such equilibria with trading where
the total value of the firms is the same as under no-trading, hence the Modigliani-Miller theorem
holds. However there are equilibria with trading in which the total value of the firms can exceed
the their total value under no-trading by a bubble, in which case the Modigliani-Miller theorem
fails.

Section 2 presents the model and extends the results of Kocherlakota’s (2008) to incomplete
markets. Section 3 allows firms to trade and show how this can lead to bubbles. The appendixes
contain technical results. Appendix A gives necessary and sufficient conditions on a process, which
if added to asset prices, will not distort the pricing kernels (and the one-period asset spans). Ap-
pendix B shows that gain processes associated to a large class of strategies satisfy those conditions.
Appendix C investigates the effect of a bubble injection on the volume of trade. Finally, Appendix D
discusses the existence of equilibria with endogenous solvency constraints à la Alvarez and Jermann
(2000).

2 Bubble injections

We consider a stochastic, discrete-time, infinite horizon economy. The time periods are indexed by
the set N := {0, 1, . . .}. The uncertainty is described by a probability space (Ω,F , P ) and by the
filtration (Ft)∞t=0, which is an increasing sequence of σ-algebras on the set of states of the world
Ω, generating F , that is such that F = σ(∪tFt). We interpret Ft as the information available at
period t. We assume that F0 = {∅,Ω} and that Ft is a finite σ-algebra, for all t. For ω ∈ Ω and
t ∈ N, we let Ft(ω) := ∩{A ∈ Ft | ω ∈ A}.3

A sequence x = (xt)t∈N of random variables (F-measurable real-valued functions) is a stochastic
process adapted to (Ft)∞t=0 (“process” henceforth) if for each t ∈ N, xt is Ft-measurable. We let X
be the set of all stochastic processes, and denote by X+ (respectively X++) the processes x ∈ X
such that xt ≥ 0 P -almost surely (respectively xt > 0 P -almost surely) for all t ∈ N. Throughout
the paper, all statements, equalities, and inequalities involving random variables are assumed to
hold only “P -almost surely”, and we will omit adding this qualifier. When K,L ∈ N\{0}, let XK×L

be the set of vector (or matrix) processes (xij)1≤i≤K,1≤j≤L with xij ∈ X. For x ∈ XK×L, we write
x ≥ 0 (respectively x > 0, x = 0) if for all 1 ≤ i ≤ K, 1 ≤ j ≤ L and t ∈ N, xijt ≥ 0 (respectively
xijt > 0, xijt = 0). Similarly x 	 0 means that x ≥ 0 but x 6= 0. The set of non-negative processes
x ∈ XK×L (that is, such that x ≥ 0) is denoted by XK×L

+ .
There is a single consumption good and a finite number, I, of consumers. An agent i ∈

{1, 2, . . . , I} has endowments ei ∈ X+, and his preferences are represented by a utility U : X+ → R
represented by U i(c) = E

∑∞
t=0 u

i
t(ct), where uit : R+ → R is continuous, increasing and concave

and E(·) is the expectation operator with respect to probability P . The conditional expectation
given the information available at t, Ft, is denoted by Et(·). Given the absence of information at
period 0, E0(·) = E(·). We denote by U it (c) := Et

∑
s≥t u

i
s(cs) the continuation utility of agent i

after t provided by a consumption stream c ∈ X+.
There is a finite number J of infinitely lived, disposable securities, traded at every date. The se-

curities are shares of firms, having singleton production sets.4 The earnings of firm j ∈ {1, 2, . . . , J}
3Using the usual “event tree” terminology, Ft(ω) is the date t node containing state (“leaf”) ω (for the parallel

between the stochastic processes vs. event tree language, see Leroy and Werner 2001, chapter 21).
4Thus we study the effect of firms’ trading conditional on their choice of a production plan.
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are described by the process dj ∈ X+. In this section, firms are regarded as passive agents that
pay out their earnings exclusively in the form of dividends, assumption which will be relaxed in
the next section. The ex-dividend price per share of firm j is a process pj ∈ X+. We denote by
d = (d1, . . . , dJ) ∈ X1×J

+ the dividend vector process, and by p = (p1, . . . , pJ) ∈ X1×J
++ the price

vector process.
Consumer i has an initial endowment θi−1 ∈ RJ of securities and his trading strategy is rep-

resented by a process θi ∈ XJ×1. We assume, without loss of generality, that firms are in unit
supply, thus

∑I
i=1 θ

i
−1 = 1 := (1, . . . , 1)′ ∈ RJ . Fix some wealth bounds wi ∈ X for agent i and

define the budget constraint and indirect utility of an agent i from period s ≥ 0 onward, when faced
with prices p ∈ X1×J

+ , solvency bounds wi ∈ X and having an initial wealth νs : Ω → R which is
Fs-measurable, as:5

Bis(νs, w
i, p, d) = {(ci, θi) ∈ X+ ×XJ×1 | cis + psθ

i
s ≤ eis + νs, (2.1)

cit + ptθ
i
t ≤ eit + (pt + dt)θit−1, (pt + dt)θit−1 ≥ wit,∀t > s}

V is (νs, w, p, d) = max
(ci,θi)∈Bi

s(νs,wi,p,d)
U it (c

i). (2.2)

Definition 1. A vector
(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1

)
consisting of6 a security price process p̄ ∈

X1×J
+ , and for each agent i ∈ {1, . . . , I}, solvency constraints w̄i ∈ X, a consumption process

c̄i ∈ X+ and a trading strategy θ̄i ∈ XJ×1 is an equilibrium with exogenous solvency constraints if
the following conditions are met:

i. The consumption and trading strategies of each agent i are feasible, that is (c̄i, θ̄i) ∈ B0((p̄0 +
d0)θi−1, w̄

i, p̄, d), and optimal,

U i(c̄i) = V i0
(
(p̄0 + d0)θi−1, w̄

i, p̄, d
)
. (2.3)

ii. Markets for goods and firms’ shares clear,

I∑
i=1

c̄it =
I∑
i=1

eit + dt · 1,∀t ∈ N, (2.4)

I∑
i=1

θit = 1,∀t ∈ N. (2.5)

Consider an equilibrium
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
with exogenous solvency constraints. The

absence of arbitrage opportunities implies the existence of a ∈ X++ such that (see, for example,
Santos and Woodford 1997)

atpt = Et [at+1(pt+1 + dt+1)] ,∀t ≥ 0. (2.6)

We denote by A(p, d) the set of all processes a ∈ X satisfying equation (2.6), and we call them
deflators. Strictly positive deflators belonging to A++(p, d) := A(p, d) ∩ X++ will be called state

5Bi
s(νs, wi, p, d) depends solely on (wi

t)t>s, (pt)t≥s, rather than on the full processes w, p. We prefer this simplified
notation to, for example, Bi

s(νs, (wi
t)t>s, (pt)t≥s, (dt)t≥s), for reasons of simplicity.

6Although solvency constraints are exogenous here, we include them in the equilibrium outcome for ease of the
exposition.
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price densities, or (interchangeably) pricing kernels. Equation (2.6) implies that

pt =
1
at
Et
∑
s>t

asds + lim
T→∞

1
at
EtaT pT .

Thus
bt(a, p) :=

1
at

lim
T→∞

EtaT pT (2.7)

is well defined and non-negative, and for all t ∈ N, atbt(a, p) = Etat+1bt+1(a, p). Thus a · b(a, p)
is a non-negative martingale, and b(a, p) = 0 if and only if b0(a, p) = 1

a0
limt→∞Eatpt = 0. We

interpret the discounted present value of dividends d under under the state price density a, that
is ft(a, d) := 1

at
Et
∑
s>t asds, as the fundamental value of d. Thus b(a, p) represents the part of

asset prices in excess of fundamental value. Following Santos and Woodford (1997), we say that the
equilibrium price process p ambiguously involves a bubble if b0(a, p) > 0 for some a ∈ A++(p, d),
while b0(a′, p) = 0 for some other a′ ∈ A++(p, d). If b0(a, p) > 0 for all a ∈ A++(p, d), the
equilibrium price process unambiguously involves a bubble component.7

Kocherlakota (2008) assumed that in addition to trading in firms’ shares, agents can also trade in
each period a full set of state-contingent claims to consumption next period. Given an equilibrium
without bubbles in which the asset prices are p and the state price density8 is a, and given an
arbitrary process ε ∈ X1×J

+ such that a·ε is a martingale, he showed that an “equivalent” equilibrium
with asset prices p + ε, pricing kernel a and identical consumption paths for the agents can be
constructed. Moreover, in the new equilibrium, the solvency constraints bind in exactly the same
dates and states as in the original equilibrium. He dubbed this result the “bubble equivalence
theorem”, since the process ε “injected” in the asset prices is the bubble component for the price
process p+ ε, that is ε = b(a, p+ ε).

We show that Kocherlakota’s (2008) bubble equivalence theorem holds in our incomplete markets
framework, if the class of candidate processes to be injected in asset prices is restricted to non-
negative elements of the set

MJ(p, d) =
{
ε ∈ X1×J | ∃Λ ∈ XJ×J , a ∈ A++(p, d) s.t. ∀t > 0, εt = (pt + dt)Λt−1, (2.8)

I + Λt−1 is non-singular and at−1εt−1 = Et−1atεt} ,

where I denotes the J-dimensional identity matrix. Let also MJ
+(p, d) := MJ(p, d) ∩ X1×J

+ . As
shown in the Appendix A (Lemmas 2 and 3, and Proposition 4), a process ε belongs to MJ(p, d) if
and only if the set of deflators associated to prices p and p+ε coincide, that is A(p, d) = A(p+ε, d),
or equivalently, if and only if p and p + ε generate the same one-period asset spans and a · ε is a
martingale for any deflator a ∈ A(p, d). It is well known that the gain process of any security or
trading strategy becomes a martingale when deflated by any a ∈ A(p, d) (see, for example, Leroy
and Werner 2001, p.261). Lemma 4 in the Appendix A shows that the gain process associated with
the shares of the J firms belongs to MJ

+(p, d), which is thus a non-empty, and potentially very large
set. For any ε ∈MJ(p, d), we let

Λ(ε, p, d) :=
{

Λ ∈ XJ×J | ∀t ≥ 1, εt = (pt + dt)Λt−1 and I + Λt−1 is non-singular
}
. (2.9)

7 In Section 3, we apply the notation b(a′, p′) and f(a′, d′) to arbitrary processes a′ ∈ X++, and p′, d′ ∈ X1,k
+ for

some k ∈ N \ {0}.
8The pricing kernel is unique when markets are complete .
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We prove first that agents’ feasible consumption paths remain unchanged when prices are inflated
by a bubble in MJ

+(p, d), if the solvency constraints are adjusted upwards by the bubble multiplied
by initial wealth.

Proposition 1. Consider an agent i, having beginning-of-period-t wealth equal to νt (Ft-measurable).
Then for any θ̄−1 : Ω→ RJ which is Ft-measurable and any ε ∈MJ

+(p, d),

(ci, θi) ∈ Bit
(
νt, w

i, p, d
)
⇐⇒ (ci, θ̂i) ∈ Bit

(
νt + εtθ̄−1, w

i + εθ̄−1, p+ ε, d
)
,

where θ̂is = (I + Λs)−1
(
θis + Λsθ̄−1

)
for every s ≥ t, and Λ ∈ Λ(ε, p, d).

Proof. Notice that for all s ≥ t,

θ̂is = (I + Λs)−1θis + (I + Λs)−1Λsθ̄−1 =
(
I − (I + Λs)−1Λs

)
θis + (I + Λs)−1Λsθ̄−1

= θis + (I + Λs)−1Λs(θ̄−1 − θis).

Let λis := (I + Λs)−1Λs(θ̄−1 − θis). Therefore, for any s ≥ t+ 1,

(ps + ds + εs)λis−1 = (ps + ds)(I + Λs−1)λis−1 = (ps + ds)Λs−1(θ̄−1 − θis) = εs(θ̄−1 − θis−1),

and thus
(ps−1 + εs−1)λis−1 = Es

as
as−1

(ps + ds + εs)λis−1 = εs−1(θ̄−1 − θis−1).

It follows that

νt + εtθ̄−1 − (pt + εt)θ̂it = νt − ptθit + εt(θ̄−1 − θit)− (pt + εt)λt = νt − ptθit

and (for s ≥ t+ 1)

(ps + ds + εs)θ̂is−1−(ps + εs)θ̂is =

= [(ps + ds + εs)θis−1 − (ps + εs)θis] + [(ps + ds + εs)λis−1 − (ps + εs)λis]

= [(ps + ds)θis−1 + εsθ
i
s−1 − psθis − εsθis] + [εs(θ̄−1 − θis−1)− εs(θ̄−1 − θis)]

= (ps + ds)θis−1 − psθis.

Moreover, for s ≥ t+ 1,

(ps + ds + εs)θ̂is−1 = (ps + ds + εs)θis−1 + (ps + ds + εs)λis−1

= (ps + ds)θis−1 + εsθ
i
s−1 + εs(θ̄−1 − θis−1)

= (ps + ds)θis−1 + εsθ̄−1.

Thus (ps+ds+εs)θ̂is−1 ≥ wis+εsθi−1 if and only if (ps+ds)θis−1 ≥ wis, and the conclusion follows.

The intuition for the proposition is as follows. With bubble-inflated prices, the initial owners
of the asset receive a windfall in the form of higher initial wealth. Tightening their future solvency
constraints by the bubble weighted by initial asset holdings will force them to save the initial
windfall in order to meet the more stringent borrowing requirements, leading thus to equivalent
budget constraints.
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Given an equilibrium without bubbles with asset prices p, for any process ε ∈ MJ
+(p, d), we

show that there is an equivalent equilibrium with prices p + ε, identical consumption and state
price densities, and in which the solvency constraints bind in exactly the same date and states (even
though they differ). Moreover ε is the bubble component in the prices p + ε for any state price
density a ∈ A(p+ε, d)(= A(p, d)), that is ε = b(a, p+ε), hence the new equilibrium unambiguously
involves a bubble.

Theorem 2. Let
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
be an equilibrium with exogenous solvency constraints.

Choose ε ∈ MJ
+(p, d) and Λ ∈ Λ(ε, p, d). Then

(
p̂, (ŵi)Ii=1, (c

i, θ̂i)Ii=1

)
is an equilibrium with

exogenous solvency constraints, where

p̂ = p+ ε, θ̂i = (I + Λ)−1
(
θi + Λθi−1

)
, ŵi = wi + εθi−1. (2.10)

Proof. Optimality of (ci, θ̂i) in the set Bi0((p̂0 +d0)θi−1, ŵ, p̂, d) follows from the optimality of (ci, θi)
in Bi0((p0 + d0)θi−1, w, p, d), and the equality of these two budgets (Proposition 1). Notice that∑
i θ̂
i
t = (I + Λ)−1(1 + Λ1) = 1, since

∑
i θ
i
t =

∑
i θ
i
−1 = 1. Thus the market clearing conditions

are satisfied.

While the injection of the bubble leaves agents’ consumption unchanged, it can affect asset price
returns. Therefore it can potentially reconcile the high volatility of returns to the relative stable
consumption data (the “equity premium puzzle). The injection of a bubble may affect also the vol-
ume of trade. This is discussed in Appendix C. The “bubble equivalence” theorem above compares
equilibria with different solvency constraints. This seems artificial, if the borrowing constraints are
viewed as exogenously given. We allow for the endogenous determination of borrowing constraints
driven by limited commitment/imperfect enforcement as in Alvarez and Jermann (2000), and show
that the bubble inflated constraints in the equivalent equilibrium are also compatible with the
endogenous mechanism determining the allowed borrowing limits.

Assume that at any period t, when facing prices p (and dividends d), consumer i can choose
to default on his beginning of period debt9 and leave the economy, receiving a continuation utility
after default Ṽ it (p, d) (assumed Ft-measurable). Thus the “punishment” continuation utility for
each agent i is described by a mapping Ṽ i : X1×J

+ × X1×J
+ → X. We allow this continuation

utility mapping to depend on prices and dividends explicitly, since in the next section dividends
will be endogenous and will depend on the trading strategies of the firm. Moreover the mapping Ṽ i

can depend on agents’ endowments and other exogenous primitives of the economy. Alvarez and
Jermann (2000), following Kehoe and Levine (1993), worked under the assumption that agents are
banned from trading following default, hence for each agent i,

Ṽ it (p, d) := U it (e
i). (2.11)

Alternatively, Hellwig and Lorenzoni (2009), building on the work of Bulow and Rogoff (1989),
assume that agents can continue to lend but not to borrow following default, thus in their case

Ṽ it (p, d) := V it (0, 0, p, d), (2.12)

where the second argument in V it (0, 0, p, d) is the process in X equal to zero at any date and state.
Some of the results that follows rely on continuation utilities after default being of the form

(2.11) or (2.12), in which case we will impose the following:
9This is equal to (pt + dt)θi

t−1 if his trading strategy is θi ∈ XJ×1.
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Assumption 1. One of the following holds:

(i) For each i ∈ {1, . . . , I}, there exists Ũ i ∈ X such that Ṽ i(p, d) = Ũ i for all p, d.

(ii) For each i ∈ {1, . . . , I}, there exists w̃i ∈ X such that Ṽ it (p, d) = V it (w̃it, w̃
i, p, d) for all p, d.

As in Alvarez and Jermann (2000), the option to default endogenizes the solvency constraints
in each period to the maximum level so that repayment is always individually rational given future
debt limits. We present the definition of solvency constraints that are not too tight.

Definition 3. The solvency constraints wi faced by the agent i are not too tight (NTT) given prices
p, dividends d and the punishment continuation utility described by Ṽ i if and only if

V it (wit, w
i, p, d) = Ṽ it (p, d),∀t.

The definition captures the idea that the bounds wi have to be “tight enough” to prevent
default (V it (wit, w

i, p, d) ≥ Ṽ it (p, d)), but they should allow for maximum credit expansion (thus
one should not have V it (wit, w

i, p, d) > Ṽ it (p, d) on a positive probability set). One can envision
the NTT solvency constraints as being imposed to agents, who cannot trade directly with each
other, by competitive financial intermediaries. The intermediaries set constraints such that default
is prevented, but credit is not restricted unnecessarily, since competing intermediaries could relax
them and increase their profits (see Ábrahám and Cárceles-Poveda (2010) for such a model in an
economy with production).

We extend our definition of equilibrium to allow for the endogenous determination of solvency
constraints, in the presence of an outside option to default. An Alvarez-Jermann equilibrium (AJ-
equilibrium, for short) with no trade by firms is a vector

(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
con-

sisting of a security price process p̄ ∈ X1×J
+ , and for each agent i ∈ {1, . . . , I}, solvency constraints

w̄i ∈ X, a consumption process c̄i ∈ X+, a trading strategy θ̄i ∈ XJ×1 and a mapping Ṽ i from
prices and dividends into continuation utilities after default such that

(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1

)
is an equilibrium, and wi are not too tight given penalties Ṽ i(p, d) for default. The existence of
Alvarez-Jermann equilibria is discussed in Appendix D.

We show next that bubble injections as in Theorem 2 preserve the NTT condition on solvency
constraints, under a mild assumption on the form of penalties for default.

Theorem 4. Let
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium. Choose ε ∈MJ

+(p, d)

and Λ ∈ Λ(ε, p, d). If Ṽ i(p+ε, d) = Ṽ i(p, d) for all agents i ∈ {1, . . . , I}, then
(
p̂, (ŵi)Ii=1, (c

i, θ̂i)Ii=1, (Ṽ
i)Ii=1

)
is an AJ-equilibrium, where p̂, θ̂i, ŵi are given by (2.10).

Proof. We need to prove that ŵi = wi + εθi−1 are not too tight for prices p̂. This is a consequence
of Proposition 1, since

Ṽ i(p̂, d) = Ṽ i(p, d) = V it (wit, w
i, p, d) = V it (wit + εtθ

i
−1, w

i + εθi−1, p+ ε, d) = V it (ŵit, ŵ
i, p̂, d).

The condition Ṽ i(p+ε, d) = Ṽ i(p, d) in the Theorem is trivially satisfied for default punishments
satisfying Assumption 1, Part (i), since in this case Ṽ i does not depend on prices and dividends. It
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holds also for default punishments satisfying Assumption 1, Part (ii), since, by Proposition 1, with
νt := w̃it, θ−1 := 0 ∈ RJ and wi := w̃i, V it (w̃it + εt · 0, w̃i, p+ ε, d) = V it (w̃it, w̃

i, p, d), and therefore

Ṽ it (p+ ε, d) = V it (w̃it, w̃
i, p+ ε, d) = V it (w̃it, w̃

i, p, d) = Ṽ it (p, d). (2.13)

3 Bubble injections with non-trivial payout policies

In this section, we consider the case in which firms can allocate their earnings d = (d1, . . . , dj) ∈
X1×J among dividend payouts, share repurchases and portfolio investments in the shares of the
other firms. Firms’ trading affect simultaneously their dividends and their security prices, since
the dividends depend on the prices of the securities, which in turn depend on the dividends. The
trading strategy of firm j is described by a vector γj ∈ XJ×1, representing holdings of shares of
the J firms. Thus for k ∈ {1, . . . , J} and t ∈ N, γk,jt represents firm j’s holdings of shares of firm
k at period t. We let γ = (γ1, . . . , γJ) ∈ XJ×J and assume throughout that γ−1 := 0 ∈ RJ×J . We
impose several conditions on trading strategies γ, so they lead to well-defined dividends and security
prices. At a minimum, the trading strategies have to result in prices and dividends that satisfy the
budget constraints of the firms, and respect portfolio constraints designed to prevent firms from
running Ponzi schemes that would enable them to offer arbitrarily large dividend streams. We
assume that firms are subject to no-debt requirements. Define Γ to be the set of strategies γ such
that

(i) There exist positive prices p ∈ X1×J
+ and dividends δ ∈ X1×J

+ such that firms’ budget con-
straints and No-Ponzi game conditions are satisfied, that is for all j ∈ {1, . . . , J},

δjt = djt + (pt + δt)γ
j
t−1 − ptγ

j
t ,∀t ≥ 0, (3.1)

(pt + δt)γ
j
t−1 ≥ 0,∀t ≥ 1. (3.2)

(ii) γ is regular, that is I− γt is nonsingular, for all t ≥ 0.10

A regular trading strategy γ produces unambiguous dividends for a given p, as seen from (3.1).
Denote the set of prices and dividends compatible with firm j trading according to γj ∈ XJ×1 by

PDj(γj) :=
{

(p, δ) ∈ X1×J
+ ×X1×J

+ | (3.1)− (3.2) hold
}
, (3.3)

and for γ = (γ1, . . . , γJ) ∈ XJ×J , let PD(γ) = ∩Jj=1PD
j(γj).

We analyze first equilibria induced by a fixed financial policy of the firms. An Alvarez-Jermann
equilibrium corresponding to a fixed payout policy γ (henceforth an AJ(γ)-equilibrium) is a vector(
p̄(γ), d̄(γ), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
consisting of security prices and dividend processes

p̄(γ), d̄(γ) ∈ X1×J
+ , and for all i ∈ {1, . . . , I}, solvency constraints w̄i ∈ X, consumption processes

c̄i ∈ XJ
+, trading strategies θ̄i ∈ XJ×1, and default continuation utilities Ṽ i such that

(i) For each agent i, (c̄i, θ̄i) is optimal in Bi0((p̄0(γ) + d̄0(γ))θi−1, w̄
i, p̄(γ), d̄(γ)).

(ii) Constraints w̄i are not too tight given penalties Ṽ i(p̄(γ), d̄(γ)) for default,

10Such strategies are called proper by DeMarzo (1988) or regular by Duffie (1988, p.122).
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(iii) Prices and dividends are compatible with γ, that is (p̄(γ), d̄(γ)) ∈ PD(γ).

(iv) Markets clear, i.e.

I∑
i=1

c̄it =
I∑
i=1

eit +
J∑
j=1

djt , ∀t ∈ N, (3.4)

I∑
i=1

θ̄it +
J∑
j=1

γjt = 1, ∀t ∈ N. (3.5)

Notice that for each γ ∈ Γ and (p, δ) ∈ PD(γ), by equation (3.1), for any a ∈ A(p, δ),

Etat+1(pt+1 + δt+1) = Etat+1 (δt+1 + (pt+1 + δt+1)γt + pt+1(I− γt+1)) ,

and therefore

atpt(I− γt) = Etat+1 (pt+1(I− γt+1) + δt+1) , ∀t ≥ 0,∀a ∈ A(p, δ). (3.6)

This suggest the next result, in which we show, in the spirit of Modigliani-Miller theorem, that
any financial trading by the firms can be “undone” by consumers.

Theorem 5. Let γ ∈ Γ and p̄, p̄(γ), d̄(γ) ∈ X1×J
+ such that (p̄t(γ) + d̄t(γ))γt−1 ≥ 0 for all t > 0

and

p̄t(γ) = p̄t(I− γt)−1,∀t ≥ 0, (3.7)

p̄t(γ) + d̄t(γ) = (p̄t + dt)(I− γt−1)−1,∀t ≥ 0. (3.8)

Consider some (Ṽ i)Ii=1 satisfying Assumption 1. Then
(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
is an

AJ-equilibrium (with no trade by firms) if and only if
(
p̄(γ), d̄(γ), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i(γ))Ii=1, (Ṽ

i)Ii=1

)
is an AJ(γ)-equilibrium, where

θ̄it(γ) := (I− γt)θ̄it,∀t ≥ 0,∀i = 1, . . . , I. (3.9)

Moreover, A(p̄(γ), d̄(γ)) = A(p̄, d).

Proof. It is immediate to check that (p̄(γ), d̄(γ)) ∈ PD(γ) and that (c̄i, θ̄i) ∈ B0((p̄0+d0)θi−1, w̄
i, p̄, d)

if and only if (c̄i, θ̄i(γ)) ∈ B0((p̄0(γ)+d̄0(γ))θi−1, w̄
i, p̄(γ), d̄(γ)). Moreover, since (c̃i, θ̃i) ∈ B0((p̄0(γ)+

d̄0(γ))θi−1, w̄
i, p̄(γ), d̄(γ)) if and only if (c̃i, ((I − γt)−1θ̃it)t) ∈ B0((p̄0 + d0)θi−1, w̄

i, p̄, d), it fol-
lows that (c̄i, θ̄i) is optimal in B0((p̄0 + d0)θi−1, w̄

i, p̄, d) if and only if (c̄i, θ̄i(γ)) is optimal in
B0((p̄0(γ) + d̄0(γ))θi−1, w̄

i, p̄(γ), d̄(γ)).
Clearly,

(
(c̄i)Ii=1, (θ̄

i)Ii=1

)
is feasible when firms do not trade if and only if

(
(c̄i)Ii=1, (θ̄

i(γ))Ii=1

)
is

feasible when firms adopt the trading strategy γ. Moreover, V it (w̃it, w̃
i, p̄, d) = Ṽ it (w̃it, w̃

i, p̄(γ), d̄(γ))
and thus, Ṽ i(p̄, d) = Ṽ i(p̄(γ), d̄(γ)) if Ṽ i is as in Assumption 1, (ii). The same equality holds
trivially if Ṽ i satisfies Assumption 1, (i). Hence, solvency constraints are not too tight at (p̄, d) if
and only if they are not too tight at (p̄(γ), d̄(γ)).

To prove the equality of price deflators it is enough to observe that p̄(γ) + d̄(γ) = (p̄ + d)(I −
γt−1)−1. Thus a ∈ A(p̄, d) is equivalent to

atp̄t(γ) = atp̄t(I− γt−1)−1 = Et
(
at+1(p̄t+1 + dt+1)(I− γt)−1

)
= Et

(
at+1(p̄t+1(γ) + d̄t+1)

)
,

and thus a ∈ A(p̄(γ), d̄(γ)).
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In the equilibrium with trading constructed above, agents have identical consumption allocations
and total holdings of shares as in the equilibrium with no trading by firms.11 The literature on the
firm’s objective under incomplete markets suggests that the discount process used by firms to value
future cash flows should be some weighted average of the subjective discount rates (intertemporal
marginal rates of substitution) of its shareholders (for a comprehensive discussion, see DeMarzo
1988). Thus if different shareholders control the firm in the equivalent equilibrium with non-trivial
financial policy for the firms, the assumption that the discount process is unchanged might not
be valid. The above argument shows that this concern is not justified, since it turns out that the
“real” shareholder composition of each firm is unchanged.

Given a p̄ ∈ X1×J
+ , Theorem 5 raises the question whether there exists a non-trivial γ ∈ Γ

(that is, γ 6= 0 ∈ XJ×J) and p̄(γ), d̄(γ) ∈ X1×J
+ such that (p̄t(γ) + d̄t(γ))γt−1 ≥ 0 for all t > 0

and (3.7)-(3.8) hold. We show that this is indeed the case, by identifying non-trivial strategies γ
with the desired properties. Moreover we show that there exist trading strategies γ that lead to
asset price bubbles in the AJ(γ)-equilibrium of Theorem 5, even though the equivalent no-trade
equilibrium does not have a bubble.

Proposition 2. Let
(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium. Assume that there

exist a pricing kernel a ∈ A++(p̄, d) under which p̄ has no bubbles, that is b0(a, p̄) = 0.12 There
exists γ ∈ XJ×J \{0} such that p̄(γ), d̄(γ) defined by (3.7)-(3.8) satisfy (p̄(γ), d̄(γ)) ∈ PD(γ) (hence
are non-negative) and such that p̄(γ) has bubbles under a, that is b0(a, p̄t(γ)) 6= 0.

Proof. We construct a γ with the desired properties in which only one firm trades (firm 1), thus
γ = (γ1, 0, . . . , 0) ∈ XJ×J . The non-negativity of prices and dividends associated to a general γ in
which all firms trade is considerably harder to investigate. Notice that

(I− γt)−1 = I +
1

1− γ1,1
t

γt. (3.10)

Therefore if γ1 ∈ XJ×1
+ and γ1,1

t < 1 for all t, then p̄(γ) given by (3.7) is nonnegative, and (3.2)
holds. The non-negativity of dt(γ) given by (3.8) follows by continuity, if γt is sufficiently close
to γt−1 (if dt 	 0 then γt can be chosen different than γt−1 and still guarantee that dt(γ) ≥ 0).
To construct bubble-inducing trading strategies in the simplest way, we assume further that firm 1
trades only in its own shares, that is γj,k = 0 for all (j, k) 6= (1, 1). Thus there is a bubble in the
price p̄1(γ) if and only if

0 < lim
t→∞

Eatp̄
1
t (γ) = lim

t→∞
Eatp̄

1
t (1− γ

1,1
t )−1.

Since d ≥ 0, it follows that d̄(γ) ≥ 0 if and only if d̄1(γ) ≥ 0, which holds if and only if

(1− γ1,1
t )−1 ≤ (1− γ1,1

t−1)−1

(
1 +

d1
t

p̄1
t

)
,∀t ≥ 0.

11Intuitively,
θ̄i = (I − γ)−1θ̄i(γ) = θ̄i(γ) + γθ̄i(γ) + γ2θ̄i(γ) + . . . .

The right hand side of the equation above represents the total ownership of shares of an agent owning θi(γ) shares
in firms with a trading portfolio γ, since it takes into account indirect holdings of securities through the portfolio γ
owned by the firms.

12b0(a, p̄) = limt→∞
1

a0
Eatp̄t (see section 2).
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Choose a sequence of real numbers (βt)∞t=0 such that βt ≥ 0 and
∑∞
t=0 βt <∞. Let αt := (1+βt)−1.

It follows that α :=
∏∞
t=0 αt ∈ (0, 1], since

exp

(
t∑
i=0

βi

)
≥

t∏
i=0

(1 + βi) ≥ 1 +
t∑
i=0

βi,∀t ≥ 0.

Construct the strategy γ1,1 recursively, satisfying γ1,1
−1 = 0 and

(1− γ1,1
t )−1 = αt(1− γ1,1

t−1)−1

(
1 +

d1
t

p̄1
t

)
,∀t ≥ 0.

By construction, p̄1(γ), d̄1(γ) ≥ 0, and (1 − γ1,1
t )−1 =

∏t
i=0 αi

(
1 + d1i

p̄1i

)
. Since a ∈ A++(p̄, d), it

follows that the process
(
atp̄

1
t

∏t
i=0

(
1 + d1i

p̄1i

))∞
t=0

is a martingale. There is a bubble in the price

p̄1(γ) if and only if 0 < limt→∞Eatp̄
1
t (γ). Notice that

lim
t→∞

Eatp̄
1
t (γ) = lim

t→∞
Eatp̄

1
t (1− γ

1,1
t )−1 = lim

t→∞

t∏
i=0

αi · Eatp̄1
t

t∏
i=0

(
1 +

d1
i

p̄1
i

)
= α(p1

0 + d1
0).

Thus firm 1 can introduce bubbles by trading in its shares according to γ1,1. The largest such
bubble is when α = 1, which happens when firms uses its earnings entirely for share buy-back and
pays no dividends. Notice also that

lim
t→∞

(1− γ1,1
t )−1 = α · lim

t→∞

t∏
i=0

(
1 +

d1
i

p̄1
i

)
.

Therefore if
∏t
i=0

(
1 + d1i

p̄1i

)
→ ∞ then γ1,1

t → 0 and thus firm is buying back asymptotically its
outstanding shares entirely. If there is only one firm in the economy and the prices p̄ exclude bubbles
under any pricing kernel in A++(p̄, d), then

∏t
i=0

(
1 + d1i

p̄1i

)
→∞. Indeed, ā ∈ X++ given by ā0 = 1

and ā−1
t := pt

p0

∏t
i=1

(
1 + d1i

p1i

)
belongs to A++(p̄1, d1) and has the property that limt→∞Eātp

1
t > 0

if
∏t
i=0

(
1 + d1i

p̄1i

)
<∞ on a set of positive probability.

The proof shows that there is a large class of trading strategies γ such that for any p̄ ∈ X1×J
+ ,

the prices and dividends p̄(γ), d̄(γ) given by (3.7)-(3.8) are non-negative. The bubbles arising
from trading, as in Proposition 2, do not affect the total market value of the firms. Indeed,
(p̄t(γ) + d̄t(γ))(I− γt−1) is the vector of firms’ date-t total market value at the AJ(γ)-equilibrium(
p̄(γ), d̄(γ), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i(γ))Ii=1, (Ṽ

i)Ii=1

)
, since it represents the value of firms’ shares minus

the value of their financial holdings.13 By (3.8), this is equal to p̄t+dt which represents firms’ date-t
values at the no-trade equilibrium

(
p̄, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
. Hence Theorem 5 implies

that for every equilibrium with no trading by firms there exists an equilibrium with trading in
which firms’ values remain unchanged. This does not imply that firms’ cannot affect their total
market values by changing their payout policies. Indeed, combining Theorems 4 and 5, we get the
following:

13In the familiar case when firms’ trading is restricted to debt instruments, then the total merket value becomes
equity plus debt.

12



Corollary 6. Let
(
p, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium and ε ∈MJ

+(p̄, d). Let

p̄ := p+ ε and let γ ∈ Γ and p̄(γ), d̄(γ) ∈ X1×J
+ such that p̄t(γ) + d̄t(γ))γt−1 ≥ 0 for all t > 0 and

(3.7)-(3.8) hold. Then
(
p̄(γ), d̄(γ), (w̄i(γ))Ii=1, (c̄

i)Ii=1, (θ̄
i(γ))Ii=1, (Ṽ

i)Ii=1

)
is an AJ(γ)-equilibrium,

where for all i ∈ {1, . . . , I},

w̄i(γ) := w̄i + εθi−1, θ̄i(γ) := (I− γ)(I + Λ)−1θ̄i, (3.11)

with Λ ∈ Λ(ε, p, d). Moreover, A(p̄(γ), d̄(γ)) = A(p̄, d) = A(p, d).

The validity of Modigliani-Miller theorem, which states that the total value of the firm is not
affected by trading, can only be discussed in a fully specified model in which firms choose a payout
policy optimally. The theorem may fail, for example, if a no-bubble equilibrium is selected in the no-
trade case and an equilibrium in which firms’ values are bubble-inflated is selected after a particular
trading strategy γ. The preferred trading strategy of each firm depends on its objective and its
beliefs (conjectures) about the value of a dividend stream. Following DeMarzo (1988), we assume
that each firm j maximizes its initial value and has a market valuation functional Πj : X → X,
assigning a value at period t equal to Πj

t (δ) to a dividend stream δ ∈ X. Firms are forward
looking, in the sense that for any t ∈ N, ω ∈ Ω and δ, δ′ ∈ X such that δs = δ′s on Ft(ω) for all
s > t, Πj

t (δ) = Πj
t (δ′). We assume that firms associate positive value to positive cashflows, that

is Πj(X+) ⊂ X+. Additionally, we require the market valuation functionals of each firm to be
consistent with the absence of arbitrage. In a finite horizon setting, DeMarzo (1988) used the same
assumption on firms’ beliefs to show that the Modigliani-Miller theorem holds, even when firms
trade and markets are incomplete.

Definition 7. A market valuation functional Π : X → X is arbitrage-free if for any k ∈ N and
∆ = (δ1, . . . , δk) ∈ X1×k, there is no θ ∈ Xk×1 such that14

(Πt(∆) + ∆t)θt−1 ≥ 0 for all t ≥ 1, (3.12)

and
(Πt(∆) + ∆t)θt−1 −Πt(∆)θt ≥ 0,∀t ∈ N, with at least one 	 . (3.13)

Lemma 1. The market valuation functional Π : X → X is arbitrage-free if and only if there exists
a unique a ∈ X++ such that

Πt(δ) = Et
at+1

at
(Πt+1(δ) + δt+1) ,∀t ≥ 0,∀δ ∈ X. (3.14)

Proof. If Π : X → X is arbitrage-free, then in particular, for any ∆ = (δ1, . . . , δk) ∈ X1×k, there is
no θ ∈ Xk×1 such that θs = 0 for all s 6= t and (3.12) and (3.13) hold (in other words there are no
one-period arbitrages at t). This is equivalent with the existence of an Ft+1-measurable random
variable qt+1 > 0 such that (3.14) holds, with at+1

at
replaced by qt+1 (Santos and Woodford 1997).

Moreover qt+1 is unique (since k can be chosen arbitrarily large, ∆t+1 is arbitrary, and Πt+1(∆)
depends only on ∆s with s > t+ 1). Repeating this reasoning at each t ≥ 0, we can construct the
desired process a by letting a0 := 1 and at := q1 · . . . qt for t ≥ 1.

Conversely, assume that there exists a ∈ X++ such that (3.14) holds. Suppose, by contradiction,
that there exists ∆ ∈ X1×k and θ ∈ Xk×1 such that (3.12) and (3.13) hold. Multiplying (3.13)

14We assume that θ−1 := 0 ∈ Rk and Πt(∆) := (Πt(δ1), . . . ,Πt(δk)).
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written for t by at and taking expectations, then summing the resulting expressions for all t ≤ T ,
we get −EaTΠT (∆)θT ≥ 0 for all T ∈ N, with at least one 	. However, multiplying the No-Ponzi
condition (3.12) written at t by at and taking expectations (for all t), we obtain EaTΠT (∆)θT ≥ 0
for all T , which is a contradiction.

The proof makes clear that Lemma 1 holds true for any no-Ponzi game conditions on firms
strategies that satisfy lim supt→∞EatΠt(∆)θt ≥ 0 for all θ,∆ and a ∈ X++ compatible with the
absence of one-period arbitrages, rather than the specific form imposed in (3.12). Lemma 1 implies
that every market valuation functional can be written as (see footnote 7)

Πt(δ) =
1
at
Et
∑
s>t

asδs + bt(a,Π(δ)). (3.15)

We will make explicit the deflator a associated to a market valuation functional Π by using the
notation (Π, a) when referring to Π.

We define next the notion of a strategic equilibrium in which firms choose their financial strategy
optimally.

Definition 8. A vector
(
γ̄, (Πj , aj)Jj=1, p̄(γ̄), d̄(γ̄), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
is an AJ-equilibrium

with trade by firms if the following conditions hold:

(i)
(
p̄(γ̄), d̄(γ̄), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
is an AJ(γ̄)-equilibrium.

(ii) For all j, (Πj , aj) is consistent with equilibrium prices, that is Πj(d̄j(γ̄)) = p̄j(γ̄).

(iii) For all j, let γj ∈ XJ×1 and δj ∈ X1×J arbitrary. Let pj(γ) := Πj(δj), dj(γ) := δj, and for
k 6= j, let pk(γ) := p̄k(γ̄)) and dk(γ) := d̄k(γ̄). If (p(γ), d(γ)) ∈ PDj(γj), then

p̄j0(γ̄) + d̄j0(γ̄) ≥ pj0(γ) + dj0(γ). (3.16)

Notice that part (iii) of the definition requires each firm to be “unsophisticated” and believe
that its trading strategy cannot affect the prices and dividends of the other firms, even though their
portfolios contain its shares.15

For any strategy γj that firm j contemplates choosing such that there exists (p, δ) ∈ PDj(γj)
with pj = Πj(δj) (that is γj is compatible with firm j’s budget and solvency constraints and its
market valuation functional), equation (3.1) implies that

E
∑
s≥0

ajsδ
j
s = E

∑
s≥0

ajsd
j
s − lim

T→∞
EajT pT γ

j
T . (3.17)

By the no-Ponzi condition (3.2), limT→∞EajT pT γ
j
T ≥ 0 and thus δj0 + f0(a, δj) ≤ dj0 + f0(a, dj).

Therefore firm j cannot increase its cum-dividend fundamental value by trading. On the other
15Alternatively, we could have required each firm j to understand that its choice of a different strategy affects the

prices and dividends of all the firms, and restricts the firm j to strategies with non-empty sets of prices and dividends
compatible with them. In this case we would need to replace (iii) by

(iii’) For all j, γ̄j is optimal, that is for every γj ∈ XJ×1 such that γ := (γj , γ̄−j) ∈ Γ and for every (p(γ), d(γ)) ∈
PD(γ) with the property that p(γ) = Πj(d(γ)), equation (3.16) holds.

All results hold under this alternative notion of strategic equilibrium with trade.
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hand, firm j’s conjectured initial total market value is

δj0 + Πj
0(δ) = E

∑
s≥0

ajsd
j
s + b0(aj ,Πj(δj))− lim

T→∞
EajT pT γ

j
T . (3.18)

Hence firms have a strict incentive to trade only if they believe they can induce a bubble in their
share price, which is high enough to compensate for the present value of its asymptotic financial
wealth and for the bubble that might exist in earnings. If firms’ market valuation functionals
exclude bubbles, then not trading is a (weakly) optimal strategy for each firm.

We construct next a (strategic) AJ-equilibrium with bubbles, in which trading is strictly pre-
ferred to no-trading. Let

(
p, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium without bub-

bles. Let a ∈ A++(p, d), ε ∈MJ
+(p, d), p̄ := p+ ε, γ ∈ Γ and p̄(γ), d̄(γ) ∈ X1×J

+ such that (3.2) and
(3.7)-(3.8) hold. For each firm j, we construct a market valuation functional (Πj , a) which attaches
the value p̄jt (γ) to cashflows that coincide with d̄j(γ) after t, and the fundamental value under a
to cashflows that do not ultimately coincide with d̄j(γ). Concretely, fix some δ ∈ X+. For every
ω ∈ Ω, define the stopping time

τ(ω) := inf{t | δs = d̄js(γ) on Ft(ω),∀s > t}.

Fix some ω ∈ Ω and t ∈ N. If t ≥ τ(ω) then define Πj
t (δ) := p̄jt (γ) on Ft(ω). If t < τ(ω) < +∞

then define Πj
t (δ) := 1

at
Et[aτ(ω)Π

j
τ(ω)(δ)] on Ft(ω). If τ(ω) = +∞ then Πj

t (δ) := 1
at
Et
∑
s>t asδs.

We have the following:

Proposition 3. Let
(
p, (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
be an AJ-equilibrium and ε ∈ MJ

+(p̄, d).

Let p̄ := p + ε and let γ ∈ Γ and p̄(γ), d̄(γ) ∈ X1×J
+ such that p̄t(γ) + d̄t(γ))γt−1 ≥ 0 for all t > 0

and (3.7)-(3.8) hold. For each firm j, let Πj be defined as above. If limT→∞EaT p̄T (γ)γT = 0,
then

(
γ, (Πj , a)Jj=1, p̄(γ), d̄(γ), (w̄i)Ii=1, (c̄

i)Ii=1, (θ̄
i)Ii=1, (Ṽ

i)Ii=1

)
is a (strategic) AJ-equilibrium with

trade by firms, where for all i ∈ {1, . . . , I},

w̄i(γ) := w̄i + εθi−1, θ̄i(γ) := (I− γ)(I + Λ)−1θ̄i, (3.19)

with Λ ∈ Λ(ε, p, d) .

Proof. By Corollary 6, it is enough to check condition (iii) in Definition 8. By construction,
Πj(d̄j(γ) = p̄j(γ) and firm j’s initial total market value at γ is dj0 + f0(a, dj) + εj0. The mar-
ket valuation functional Πj also satisfies

Πj
t (δ) ≤

1
at
Et
∑
s>t

asδs + bt(a,Πj(d̄j(γ))),∀δ ∈ X+,∀t ≥ 0, (3.20)

and the inequality is strict on a set of positive probability if (δt+1, δt+2, . . .) 6= (d̄jt+1(γ), d̄jt+2(γ), . . .).
Firm j’s value at an alternative trading strategy γ̂j and prices and dividends (p(γ̂), d(γ̂)) ∈

PDj(γ̂j) (with γ̂ := (γ̂j , γ−j)) satisfies

dj0(γ̂) + Πj
0(dj(γ̂)) < f0(dj(γ̂)) + b0(a,Πj(d̄(γ))) ≤ dj0 + f0(a, dj) + εj0, (3.21)

where the first inequality follows from (3.20) and the last equality from (3.18). This completes the
proof.
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4 Conclusion

We showed that bubbles can be injected in economies with incomplete markets, extending thus the
results of Kocherlakota (2008), which were limited to environments with complete sets of period-
ahead state-contingent securities. Any non-negative process that does not change the set of pricing
kernels can be made into a bubble in an equivalent equilibrium with identical consumption for the
agents, but tighter solvency constraints. Moreover, if the solvency constraints are endogenized as
in Alvarez and Jermann (2000) to reflect some inherent participation constraints the agents are
subject to, then the modified solvency constraints in an equilibrium with bubble injected prices still
arise endogenously from the existence of participation constraints.

Moreover, the bubble injection results can be extended to situations where firms are allowed
to trade. In this setup, bubbles can be interpreted as arising from firms’ self-fulfilling conviction
that they can influence their share prices by manipulating their payout policy adequately. Some
equilibria with trading preserve the total value of the firms while others do not, and hence violate
the Modigliani-Miller theorem.

A Characterization of the set MJ(p, d)

Lemma 2. Let p, d ∈ X1×J
+ such that A++(p, d) 6= ∅ and ε ∈ X1×J . The following are equivalent:

(i) There exists Λ ∈ XJ×J such that εt = (pt+dt)Λt−1 for all t ≥ 1 and there exists a ∈ A++(p, d)
such that a · ε is a martingale.

(ii) There exists Λ ∈ XJ×J such that εt = (pt + dt)Λt−1 for all t ≥ 1 and εt = ptΛt, for all t ≥ 0.

(iii) A(p, d) ⊂ A(p+ ε, d)

(iv) For each a ∈ A(p, d), a · ε is a martingale.

Proof. (i) ⇒ (ii) The conclusion is immediate, since for all t ≥ 0,

εt = Et
at+1

at
εt+1 = Et

at+1

at
(pt+1 + dt+1)Λt = ptΛt.

(ii) ⇒ (iii) Let a ∈ A(p, d). The conclusion follows, since

Et
at+1

at
(pt+1 + dt+1 + εt+1) = Et

at+1

at
(pt+1 + dt+1)(I + Λt) = pt(I + Λt) = pt + εt.

(iii) ⇒ (iv) Let a ∈ A(p, d). Thus a ∈ A(p+ ε, d). It follows that for all t ≥ 0,

pt + Et
at+1

at
εt+1

a∈A(p,d)
= Et

at+1

at
(pt+1 + dt+1 + εt+1)

a∈A(p+ε,d)
= pt + εt,

and thus εt = Et
at+1
at

εt+1.
(iv) ⇒ (i) Assume that m ∈ X is such that a · m is a martingale, for any a ∈ A(p, d). Pick

an arbitrary date t event Ft(ω) with ω ∈ Ω, with Ft(ω) representing the cell of the partition Ft
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containing ω) (in other words pick a date t node in the uncertainty tree). Assume that there Ft+1

has S subsets of Ft(ω) (i.e. there are S branches leaving the fixed node). Then the returns rt+1

conditional on the event Ft(ω) can be viewed as an S×J matrix R. Similarly mt+1/mt conditional
on Ft(ω) is represented by a vector M ∈ RS . If µ ∈ RS is interpreted as conditional state price
process at+1/at times conditional probabilities, it follows that for any µ ∈ RS such that 1′ = µ′R,
it must be the case that 1 = µ′M . We can transform this statement into an incompatibility of a
system of equations statement, in order to be able to use alternative theorems. Specifically, the
following system is incompatible{

µ′(R1 −M) < 0
µ′(R1 −Rj) = 0, j ∈ {2, . . . , J}.

By Motzkin’s alternative theorem (Motzkin 1951), there exist α2, . . . , αJ ∈ R such that R1 −M =∑J
j=2 αj(R

1 −RJ). Therefore M can be written as a linear combination of the columns of R, and
thus there exists λ ∈ XJ×1 such that mt = (pt + dt)λt−1, for all t ≥ 1.

Each component εj of ε = (ε1, . . . , εJ) is a martingale when deflated by any a ∈ A(p, d). As
proven above, for each j there exists λj ∈ XJ×1 such that εjt = (pt + dt)λ

j
t−1 for all t ≥ 1. The

conclusion follows by setting Λ = (λ1, . . . , λJ).

For each t ≥ 1, let St(p, d) be the set of attainable payoffs at t given the price and dividend
processes p, d ∈ X1×J

+ :

St(p, d) := {(pt + dt)λ | λ : Ω→ RJ and λ is Ft−1 −measurable}. (A.1)

We will refer to St(p, d) as the period t asset span. We say that there are no redundant securities
at t − 1, given prices p, if there is no λ : Ω → RJ such that λ is Ft−1−measurable, λ 6= 0 and
(pt + dt)λ = 0.

Lemma 3. Let p, d, ε ∈ X1×J
+ . Fix a t ≥ 1. Then the following hold:

(i) St(p + ε, d) ⊂ St(p, d) if and only if there exists Λt−1 : Ω → RJ×J which is Ft−1-measurable
and such that εt = (pt + dt)Λt−1.

(ii) If there exists Λt−1 : Ω → RJ×J which is Ft−1-measurable and such that εt = (pt + dt)Λt−1

and I + ∆t−1 is non-singular, then St(p+ ε, d) = St(p, d).

(iii) If there exists t such that St(p+ ε, d) = St(p, d) and there are no redundant securities at t−1,
then there exists Λt−1 : Ω→ RJ×J which is Ft−1-measurable and such that εt = (pt+dt)Λt−1

and I + ∆t−1 is non-singular.

Proof. (i) Assume St(p + ε, d) ⊂ St(p, d). Therefore for any λt−1 : Ω → RJ which is Ft−1-
measurable, there exists λ′t−1 : Ω → RJ , Ft−1-measurable, such that (pt + dt + εt)λt−1 = (pt +
dt)λ′t−1. It follows that εtλt−1 = (pt + dt)(λ′t−1 − λt−1), and since λt−1 was arbitrary, we conclude
that each of the J components of εt belongs to St(p, d) and therefore εt = (pt + dt)Λt−1, for
some Λt−1 : Ω → RJ×J which is Ft−1-measurable. Conversely, for any λt−1 : Ω → RJ which is
Ft−1-measurable, (pt + dt + εt)λt−1 = (pt + dt)(I + ∆t−1λt−1 ∈ St(p, d).

(ii) Given the previous part, it is enough to prove St(p, d) ⊂ St(p+ ε, d). Let λt−1 : Ω→ RJ be
Ft−1-measurable. The conclusion follows from

(pt + dt)λt−1 = (pt + dt + εt)(I + Λt−1)−1λt−1 ∈ St(p+ ε, d).
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(iii) Since St(p + ε, d) ⊂ St(p, d), by Part (i), there exists Λt−1 : Ω → RJ×J which is Ft−1-
measurable and such that εt = (pt + dt)Λt−1. Using St(p, d) = St(p + ε + (−ε), d) ⊂ St(p + ε, d),
together with Part (i), there exists Γt−1 : Ω → RJ×J which is Ft−1-measurable and such that
εt = (pt + dt + εt)Γt−1. Therefore

εt(I− Γt−1) = (pt + dt)Γt−1 = (pt + dt) (∆t−1(I− Γt−1)− Γt−1) = 0.

Since there are no redundant securities, we conclude that ∆t−1(I − Γt−1) − Γt−1 = 0, which is
equivalent to (I + ∆t−1)(I− Γt−1) = I, hence I + ∆t−1 is indeed non-singular.

Proposition 4. Assume that there are no redundant securities at any period t. The following are
equivalent:

(i) ε ∈MJ(p, d).

(ii) A(p, d) = A(p+ ε, d).

(iii) St(p, d) = St(p+ ε, d) for all natural t and a · ε is a martingale, for some a ∈ A(p, d).

Proof. (i) ⇒ (ii) Notice that Lemma 2 implies that A(p, d) ⊂ A(p+ ε, d). Choose a ∈ A(p+ ε, d).
Then for any t ≥ 0,

Et
at+1

at
(pt+1 + dt+1) = Et

at+1

at
(pt+1 + dt+1 + εt+1)(I + Λt)−1 = (pt + εt)(I + Λt)−1

= (pt + ptΛt)(I + Λt)−1 = pt(I + Λt)(I + Λt)−1 = pt.

Thus a ∈ A(p, d) and the conclusion follows.
(ii)⇒ (iii) A(p, d) ⊂ A(p+ε, d) implies the existence of ∆ such that εt = (pt+dt)Λt−1. We just

need to show that I + ∆t−1 is non-singular. Since A(p + ε, d) ⊂ A(p + ε + (−ε), d), there exists Γ
such that εt = (pt + dt)Γt−1, and it follows that (I + ∆t−1)(I−Γt−1) = I, hence I + ∆t−1 is indeed
non-singular.

(iii) ⇒ (i) Follows from Lemma 3, part (iii).

B Gain processes belong to MJ
+(p, d)

We give conditions under which the gain process associated to a J-dimensional vector of trading
strategies belongs to MJ(p, d). The return from t to t+ 1 on a trading strategy θ is defined as

rt+1 :=
(pt+1 + dt+1)θt

ptθt
.

Fix a trading strategy θ̄ ∈ XJ×1
+ having a positive return r̄.16 Define the discount factor process ρ

as

ρt =
t∏

s=1

r̄−1
s ,∀t > 0.

16If dividends and prices are positive, any θ̄ ∈ XJ×1
+ generates a positive return.
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The gain process g(θ) ∈ X associated to a trading strategy θ ∈ X1×J is defined as (Leroy and
Werner 2001, p. 259)

gt(θ) := ptθt + ρ−1
t

t∑
s=1

ρs ((ps + ds)θs−1 − psθs) ,∀t.

Thus gt(θ) represents the gain realized by the trading strategy θ from date 0 to date t measured
in units of date t consumption; it is computed as the sum of payoffs of the strategy θ up to date
t reinvested in each period at the rate of return generated by θ̄. Given a J-dimensional vector
of trading strategies Θ = (θ1, . . . , θJ) ∈ XJ×J , we let g(Θ) := (g(θ1), . . . , g(θJ)) ∈ X1×J be the
gain process associated to Θ. It follows that g(Θ) has the same expression as that for g(θ) given
above, if θ is replaced by Θ. The gain process gj associated to security j is defined as the gain of
a buy-and-hold portfolio consisting of a unit of security j. Thus

gjt = pjt + ρ−1
t

t∑
s=1

ρsd
j
s, and gt = pt + ρ−1

t

t∑
s=1

ρsds.

We let g := (g1, . . . , gJ). Notice that g = g(I). For any trading strategy Θ ∈ XJ×J , it is immediate
to check that g(Θ) is a martingale when deflated by an a ∈ A(p, d) (for the case Θ = I and
a discount factor generated by risk free returns, see Theorem 26.4.1, Leroy and Werner 2001).
Moreover,

gt(Θ) = (pt + dt)Θt−1 + r̄tρ
−1
t−1

t−1∑
s=1

ρs ((ps + ds)Θs−1 − psΘs)

= (pt + dt)

(
Θt−1 + θ̄t−1(pt−1θ̄t−1)−1ρ−1

t−1

t−1∑
s=1

ρs ((ps + ds)Θs−1 − psΘs)

)
.

Define λt−1(Θ) ∈ XJ×1 by

λt−1(Θ) :=

(
(pt−1θ̄t−1)−1ρ−1

t−1

t−1∑
s=1

ρs ((ps + ds)Θs−1 − psΘs)

)′
.

It is immediate to check that(
I + Θt−1 + θ̄t−1λ

′
t−1(Θ)

)−1 = (I + Θt−1)−1 −
(I + Θt−1)−1θ̄t−1λ

′
t−1(Θ)(I + Θt−1)−1

1 + λ′t−1(Θ)(I + Θt−1)−1θ̄t−1
,

whenever I + Θt−1 is non-singular and 1 + λ′t−1(Θ)(I + Θt−1)−1θ̄t−1 6= 0. This suggests that
g(Θ) ∈MJ(p, d) for a large set of Θ’s. In particular, for Θ = I,17

(
I + Θt−1 + θ̄t−1λ

′
t−1(Θ)

)−1 =
1
2
I +

1
4

θ̄t−1λ
′
t−1(I)

1 + λ′t−1(I)θ̄t−1/2
.

17In the case Θ = I, the determinant of the matrix I + Θt−1 + θ̄t−1λ′t−1(Θ) is easy to compute, and equals

2J (1 + λ′t−1(I)θ̄t−1/2). Thus the matrix is non-singular if and only if 1 + λ′t−1(I)θ̄t−1/2 6= 0, and we arrived to the
same conclusion, but without deriving the explicit expression for the inverse.
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A sufficient condition (but not necessary) for 1 + λ′t−1(I)θ̄t−1/2 6= 0, taking into account the fact
that λ′t−1(I) = (pt−1θ̄t−1)−1ρ−1

t−1

∑t−1
s=1 ρsds ≥ 0 is for θ̄ ∈ XJ×1

+ , since in that case λ′t−1(I)θ̄t−1 ≥ 0.
Thus we gave conditions on a vector of trading strategies Θ ∈ XJ×J such that the associated

gain process g(Θ) belongs to MJ(p, d). In particular we obtained the following:

Lemma 4. The security gain process g belongs to MJ
+(p, d).

C Volume of trading effects of bubble injections

Bubble episodes (that is periods of asset prices too high to be justified by fundamentals) are typically
associated with large increases in both share trading volume and dollar trading volume for those
assets (Cochrane 2002). We investigate the effect the injection of a bubble has on the volume of
trade. We compare the volume of trade for the two “equivalent” equilibria of Theorem 2, the bubble-
free equilibrium

(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
, and the bubbly equilibrium

(
p̂, (ŵi)Ii=1, (c

i, θ̂i)Ii=1

)
. In

the first equilibrium, the number of shares of each asset bought, respectively sold, by agent i at t
is (θit − θit−1)+, respectively (θit − θit−1)− (the positive part and the negative part of the change in
portfolio are applied component-wise). Notice that the total number of shares of each asset bought
and sold at t are equal, since∑

i

(θit − θit−1)+ =
∑
i

(θit − θit−1)− =
1
2

∑
i

|θit − θit−1|.

Thus we can measure the share volume of trade (total number of shares traded) at t as 1
21′
∑
i |θit−

θit−1|, and the dollar volume of trade by 1
2p
∑
i |θit − θit−1|. We compare the total volumes of trade

at period 0 (when the bubble is injected), since it leads to comparatively simpler expressions. The
initial dollar volume of trade, in the bubble free equilibrium, is 1

2p0

∑
i |θi0 − θi−1|. In the bubbly

equilibrium,

1
2
p̂0

∑
i

|θ̂i0 − θi−1| =
1
2
p0(I + Λ0)

∑
i

∣∣(I + Λ0)−1(θi0 + Λ0θ
i
−1)− θi−1

∣∣
=

1
2
p0(I + Λ0)

∑
i

∣∣(I + Λ0)−1(θi0 − θi−1)
∣∣ .

Of course, the share volume of trade in the two equilibria are 1
21′
∑
i |θi0 − θi−1|, respectively

1
21′
∑
i

∣∣(I + Λ0)−1(θi0 − θi−1)
∣∣. Therefore the introduction of the bubble affects in general the vol-

ume of trade. At this level of generality, it is difficult to ascertain the direction of change of the
volume of trade. However, when there exists a single security (J = 1), the dollar volume of trade
is unaffected by the presence of the bubble, in the period when the bubble is injected.

D Existence of Alvarez-Jermann equilibria

Existence of an equilibrium
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
, as defined by (2.3)-(2.5) in section 2,

is a delicate problem, due to the presence of incomplete markets, real (long-lived) securities and
infinite horizon. The dependence of the rank of the matrix of returns (at each date and state) on
asset prices can create discontinuities in demand and lead to existence failures (for a two period
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environment where an equilibrium does not exist, due to the “drop in rank” problem, see Hart 1975).
Hernandez and Santos (1996) prove that an equilibrium exists in our environment for a dense subset
of endowment and dividend processes, if agents are “sufficiently impatient” (see footnote 1), they
have a non-negative initial holding of securities and if the solvency constraints are chosen equal to
the maximum amount that an agent can borrow, if he must hold non-negative wealth after some
finite date, that is18

wit = − inf
a∈A++(p,d)

Et
∑
s≥t

as
at
eis,∀i, t. (D.1)

Let
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
be an equilibrium with solvency constraints as above. If V it (wit, w

i, p, d)

is well defined,19 then
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
with Ṽ it := V it (wit, w

i, p, d) is triv-

ially an Alvarez-Jermann equilibrium. Similarly,
(
p, (w̄i)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
with w̄it :=

(pt + dt)θit−1 and Ṽ it := U it (c
i) is an Alvarez-Jermann equilibrium. The exogenous penalties for

default in both these two Alvarez-Jermann equilibria satisfy the condition in Theorem 4 (are unaf-
fected by the injection of a bubble in asset prices).

The existence of Alvarez-Jermann equilibria in which the penalty of default is predetermined,
as in (2.11) for example (where agents are banned from trading upon default), is a harder prob-
lem. With complete markets, Kehoe and Levine (1993) showed that Arrow-Debreu equilibria where
agents’ consumption sets are restricted to consumption paths with continuation utilities higher than
autarky exist. Such a Kehoe-Levine equilibrium can be implemented as an Alvarez-Jermann equilib-
rium (Alvarez and Jermann 2000). With incomplete markets, the most we can hope is to prove the
existence of an equilibrium having the property that agents’ continuation utilities are higher than
in autarky, and then show that the solvency constraints associated to this equilibrium can be mod-
ified so that they become not too tight. Of course the existence step is problematic, as we pointed
out above. We know (generic) existence for equilibria subject to solvency constraints of type (D.1).
Assume that

(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1

)
is such an equilibrium, and that U it (c

i) ≥ U it (ei) for all i, t.

We show that there exist solvency constraints (w̄i) such that
(
p, (wi)Ii=1, (c

i)Ii=1, (θ
i)Ii=1, (Ṽ

i)Ii=1

)
with Ṽ it given by (2.11) is an Alvarez-Jerman equilibrium. We construct w̄i as the limit of an in-
creasing sequence of solvency constraints (wi,(k))k∈N. Let wi,(0) := wi ≤ 0. There exists wi,(1) ∈ X
such that for all t, V it (wi,(1)

t , wi,(0), p, d) = U it (e
i), due to the concavity (and hence continuity) of

V it in the first argument. Since U it (e
i) ≤ U it (c

i) = V it ((pt + dt)θit−1, w
i,(0), p, d), it follows that

(pt + dt)θit−1 ≥ w
i,(1)
t , for all t. We can also show that φi,(1) ≤ 0. This follows from

V it (wi,(1)
t , wi,(0), p, d) = Ut(ei) ≤ V it (0, wi,(0), p, d), (D.2)

18Hernandez and Santos (1996) actually work with borrowing limits that limit end of period wealth, that is an
agent’s i trading strategy θi must satisfy

ptθ
i
t ≥ − inf

a∈A++(p,d)
Et

∑
s≥t+1

as

at
ei
s,

when faced with prices p. Florenzano and Gourdel (1993) show that agents subject to these borrowing limits have
identical budget constraints to the situation where they are subjected to debt constraints (pt + dt)θi

t−1 ≥ wi
t that

limit the beginning of period wealth, with wi given by (D.1). Therefore all the results of Hernandez and Santos
(1996) apply to the corresponding environment with debt constraints (D.1).

19This is always the case if the markets are dynamically complete and agents’ utility of the zero consumption path
is finite.
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since starting with wealth zero at t and facing negative solvency constraints always makes autarky
(i.e. ei) feasible. Moreover, wi,(1) ≥ wi,(0), since V it (wi,(1)

t , wi,(0), p, d) ≥ V it (wi,(0)
t , wi,(0), p, d).

Construct next the bounds wi,(2) ∈ X such that V it (wi,(2)
t , wi,(1), p, d) = U it (e

i). From

U it (e
i) = V it (wi,(1)

t , wi,(0), p, d) ≥ V it (wi,(1)
t , wi,(1), p, d)

we infer wi,(2) ≥ wi,(1). Since Bit((pt + dt)θit−1, w
i,(1), p, d) ⊂ Bit((pt + dt)θit−1, w

i,(0), p, d), it follows
that (pt + dt)θit−1 ≥ w

i,(2)
t . Equation (D.2) (with wi,(0) replaced by wi,(1) and wi,(1) by wi,(2))

implies wi,(2) ≤ 0. Repeating the construction, we obtain the monotone increasing bounds wi,(k)
t ,

dominated from above by min{(pt + dt)θit−1, 0}, hence converging to some w̄it, and such that

V it (wi,(k+1)
t , wi,(k), p, d) = U it (e

i).

Continuity in the product topology of V it in the first and second arguments (following from con-
cavity) implies that by letting k → ∞, V it (w̄it, w̄

i, p, d) = U it (e
i), which means that w̄i are not too

tight.
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