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1. Introduction

Restricted participation to financial markets refers to the fact that agents face exogenous con-

straints on their portfolio holdings. These constraints are usually described by a collection of

subsets (one for each agent) of the space of all possible portfolios. Each subset represents the set

of portfolios that the corresponding agent is allowed to hold. The economic relevance and interest

in considering restricted participation is known since a long time and dates back to the seminal

paper of Radner (1972) where agents face short sales constraints. It is also well known that the

presence of such portfolio constraints is a natural cause of market incompleteness − even if there

exist enough assets to hedge all risks − and allows to capture a wide range of imperfections in the

financial markets, such as collateral requirements, margin requirements, “combo” sales, short sell-

ing constraints, and more generally institutional constraints. We refer the reader to Elsinger and

Summer (2001) who provide an extensive discussion of these institutional constraints and how to

model them in a general financial framework.

The equilibrium existence problem in this context has been enjoying a growing interest since

the first work by Siconolfi (1989), and Cass (1984, 2006). Linear equality constraints are con-

sidered by Balasko et al. (1990) with nominal assets, and by Polemarchakis and Siconolfi (1997)

with real assets, whereas Aouani and Cornet (2009) study linear equality and inequality constraints

with either nominal or numéraire assets. More recently, the “general” case of portfolio sets which

are closed and convex subsets of the space of all possible portfolios, as in Siconolfi (1989), is

considered by Angeloni and Cornet (2006) and Aouani and Cornet (2009) for real assets, and by

Martins-da-Rocha and Triki (2005), Hahn and Won (2007), and Cornet and Gopalan (forthcoming)

when assets are nominal.

A key step in the proof of existence of a financial equilibrium with nominal, numéraire or real

assets is to show that equilibrium portfolios can be, a priori, chosen in a bounded set. This is an
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easy task if there are no redundant assets, or equivalently if the return matrix has full column rank.

With unrestricted participation, there is no loss of generality in making this “Full Rank Assump-

tion”. Indeed, one can easily show that a situation in which redundant assets are available can

be converted into one in which they are not by removing the redundant assets (which practically

amounts to deleting redundant columns from the return matrix). Matters are much more compli-

cated when agents’ participation to financial markets is constrained. In fact, as emphasized by

Balasko et al. (1990), one significant source of restricted participation is financial intermediation

which typically involves redundancy. So there are no a priori grounds for the standard Full Rank

Assumption in the presence of restricted participation. This fact constitutes a major obstacle to the

application of fixed point theorems which are usually used to show existence of equilibrium.

With portfolio sets defined by linear equality constraints, Balasko et al. (1990) develop a pro-

cedure to overcome this obstacle. They show how to transform agents’ financial opportunities

to obtain a financial economy in which each agent’s portfolio choice set is a subspace having

the same dimension as the wealth space it generates; a non-redundancy-type condition used by

Siconolfi (1989) to show existence of equilibrium. Moreover, every equilibrium in the transformed

economy leads to an equilibrium in the original one (of course, the transformation would be of no

avail if the latter result did not hold). It is not possible to follow this procedure when portfolio sets

are not linear. However, in Aouani and Cornet (2009) we are able to extend the above analysis to

polyhedral portfolio sets i.e. sets that are defined by linear equality and inequality constraints. By

appropriately modifying agents’ portfolio sets, we obtain a new − say reduced − financial struc-

ture satisfying a non-redundancy-type condition weaker than the one in Siconolfi (1989), keeping

the correspondence between the equilibria. Furthermore, we show existence of equilibrium for

reduced financial economies.

The main purpose of this paper is to go beyond polyhedral portfolio sets. Although existence of

equilibrium was the driving force of this work, the proof of existence of equilibria will be merely

an immediate consequence of the conjunction of our main result concerning existence of reduced

equivalent financial structures and the equilibrium existence result for reduced financial economies

in Aouani and Cornet (2009). This approach allows generalizing all previous existence results for

nominal or numéraire assets, and represents the first contribution of this paper to the literature. The

key contribution of this paper is to provide a novel approach to the problem posed by dealing with
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redundant assets. Since simply removing redundant assets in the presence of portfolio restrictions

would considerably change the nature of the market by altering wealth transfer sets, we propose

instead, to remove some of the redundant portfolios. In Aouani and Cornet (2008), these portfolios

are labeled as useless and a justification for this term is provided. More precisely, we show that

under a very mild assumption − Closedness in the text − every financial structure is equivalent, in

terms of financial possibilities and in terms of consumption equilibria, to another structure in which

there are no useless portfolios (its reduced form). It is the purpose of future research to investigate

the risk-sharing role of those redundant portfolios that cannot be dispensed with, without losing

either of the properties equivalent or reduced. One can think of those portfolios as being useful.

The paper is organized as follows. In Section 2, we describe the financial exchange economy,

introduce an equivalence relation on the set of financial structures, define the reduced form of a

financial structure, state our results, and provide a proof for the equilibrium existence theorem

(Theorem 3). Section 3 is devoted to the proof of our main result (Theorem 1) as a consequence

of a sharper result (Theorem 4). Section 2.6 provides sufficient conditions for the Closedness

Assumption to hold and an example showing that Closedness is strictly weaker than the sufficient

conditions presented in Propositions 2 and 3. Section 4 is devoted to the proof of Theorem 2. The

Appendix (Section 6) gathers the proofs of all the propositions stated in the text.

2. The two-period model and the main result

2.1. The stochastic financial exchange economy
2 We consider the basic stochastic model with two dates: t = 0 (today) and t = 1 (tomorrow).

At the second date, there is a nonempty finite set S := {1, . . . , S } of states of nature, one of which

2We shall use hereafter the following notations. If I is a finite set, whose number of elements is I, the space

RI (identified to the space RI of functions x : I → R whenever necessary) is endowed with the scalar product

x · y :=
∑I

i=1 xiyi, and we denote by ‖x‖ :=
√

x · x the Euclidean norm, BI(x, r) :=
{
y ∈ RI : ‖y − x‖ ≤ r

}
, the closed

ball centered at x ∈ RI of radius r > 0. For x = (xi) and y = (yi) in RI , the notation x ≥ y (resp. x > y,

x � y) means that, for every i, xi ≥ yi (resp. x ≥ y and x , y, resp. xi > yi) and we let RI
+ =

{
x ∈ RI : x ≥ 0

}
,

RI
++ =

{
x ∈ RI : x � 0

}
. Let X ⊂ RI , the span of X is the linear subspace of RI , denoted < X >, which is the set of all

the K-linear combinations
∑K

k=1 αk xk of vectors xk ∈ X for every integer K, and we denote by int X, cl X, respectively,

the interior and the closure of X. Consider a I × J-matrix A with I rows and J columns, with entries A j
i (i ∈ I, j ∈ J),

we denote by Ai the i-th row of A (hence a row vector, i.e., a (1 × J)-matrix, often identified to a vector in RJ when

there is no risk of confusion) and A j denotes the j-th column of A (hence a column vector, i.e., a I × 1-matrix, which
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prevails at time t = 1 and is only known at time t = 1. For convenience, s = 0 denotes the state of

the world (known with certainty) at period 0 and we let S̄ = {0} ∪ S = {0, 1, . . . , S }. At each state,

today and tomorrow, there is a spot market for a positive number ` of divisible physical goods

and we assume that the goods are perishable, i.e., each good does not last more than one period.

In this model a commodity is a couple (h, s), specifying the physical good h = 1, . . . , ` and the

state 0, 1, . . . , S at which it is available. Thus the commodity space is RL, where L = `(1 + S ).

An element x (resp. p) in RL is called a consumption (resp. a price) and we will use the notation

x = (x(s))s∈S̄ ∈ RL, where x(s) = (x1(s), . . . , x`(s)) ∈ R`, denotes the spot consumption at node

s ∈ S̄.

In the exchange economy, there is nonempty finite set I := {1, . . . , I} of consumers. Each

consumer i ∈ I is endowed with a consumption set Xi ⊂ RL, a preference correspondence Pi, from∏
k∈I Xk to Xi, and an endowment vector ei ∈ RL. The set Xi is the set of her possible consumptions,

and for x ∈
∏

i∈I Xi, Pi(x) is the set of consumption plans in Xi which are strictly preferred to xi

by consumer i, given the consumption plans (xi′)i′,i of the other agents. Finally ei = (ei(s))S̄ lists

the state endowment ei(s) across states, with ei(0) being known with certainty and ei(s) (s , 0)

being available only if state s prevails at t = 1. The exchange economy can thus be summarized

by E = (Xi, Pi, ei)i∈I.

Agents may operate financial transfers across states in S̄ (i.e. across the two periods and across

the states of the second period) by exchanging a finite number of assets j ∈ J := {1, · · · , J}, which

define the financial structure of the model.3 The assets are traded at the first period (t = 0) and

yield payoffs at the second period (t = 1), contingent on the realization of the state of nature

s ∈ S. The payoff of asset j ∈ J , when state s ∈ S is realized, is V j
s (p) (for a given commodity

price p ∈ RL). So, the payoff of asset j across tomorrow states is described by the mapping

p 7→ V j(p) := (V j
s (p))s∈S ∈ RS . The financial structure is described by the payoff matrix mapping

may similarly be identified to a vector in RI). If there is no risk of confusion, we will use the same notation for the

I × J-matrix A and the associated linear mapping A : RJ → RI . We shall denote by ker A :=
{
x ∈ RJ : Ax = 0

}
the

kernel of A, by Im A :=
{
Ax : x ∈ RJ

}
the image of A, and by rank A the rank of the matrix A, that is, the dimension of

Im A. We also denote ker A by {A = 0} and we let {A ≥ 0} :=
{
x ∈ RJ : Ax ≥ 0

}
. The transpose matrix of A, denoted by

AT , is the J × I-matrix whose rows are the columns of A, or equivalently, is the unique linear mapping AT : RI → RJ ,

satisfying Ax · y = x · AT y for every x ∈ RJ , y ∈ RI .
3The case of no financial assets – i.e., J is empty – is called pure spot markets.
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V : p 7→ V(p), where V(p) is the S × J-matrix, whose columns are the payoffs V j(p) ( j = 1, . . . , J)

of the J assets. A portfolio z = (z j) ∈ RJ specifies quantities |z j| ( j ∈ J) of each asset j, with the

convention that the asset j is bought if z j > 0 and sold if z j < 0. Thus V(p)z is its random financial

return across states at time t = 1, and Vs(p) · z is its return if state s prevails.

We assume that each agent i is restricted to choose her portfolio within a portfolio set Zi ⊂ RJ,

which represents the set of portfolios that are (institutionally) admissible for agent i. This general

framework allows us to address, for example, the following important situations:

(i) Zi = RJ (unconstrained portfolios),

(ii) Zi = zi + RJ
+, for some zi ∈ −R

J
+ (exogenous bounds on short sales),

(iii) Zi = BJ(0, 1) (bounded portfolio sets),

(iv) Zi is a vector space (linear equality constraints),

(v) Zi is polyhedral and contains 0 (linear equality and inequality portfolio constraints).

Note that the polyhedral case covers the cases (i)-(iv) (with an appropriate choice of the norm in

(iii)). Throughout the paper we make the following assumption which covers all the above cases:

F1. For every i ∈ I, Zi is closed convex and contains 0, and V : RL → RS×J is continuous.

We summarize byF =
(
V, (Zi)i∈I

)
the financial characteristics, referred to as the financial structure.

We will say that the financial structure F is standard if it satisfies Assumption F1.

2.2. Financial equilibria and no-arbitrage

Given commodity and asset prices (p, q) ∈ RL × RJ, the budget set of consumer i is4

Bi
F

(p, q) =

(xi, zi) ∈ Xi × Zi :
p(0) · xi(0) + q · zi ≤ p(0) · ei(0)

p(s) · xi(s) ≤ p(s) · ei(s) + Vs(p) · zi, ∀s ∈ S


= {(xi, zi) ∈ Xi × Zi : p (xi − ei) ≤ W(p, q)zi} ,

where W(p, q) denotes the total payoff matrix, that is, the (1 + S ) × J-matrix

 −q

V(p)

.
We now introduce the standard equilibrium notion in this model.

4For every p = (p(s)), x = (x(s)) in RL, we denote by p x the vector
(
p(s) · x(s)

)
s∈S̄.
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Definition 1. An equilibrium of the economy (E,F ) is a list
(
p̄, q̄, x̄, z̄

)
∈ RL × RJ × (RL)I × (RJ)I

such that

(i) for every i, (x̄i, z̄i) maximizes the preference Pi under the budget constraint, that is

(x̄i, z̄i) ∈ Bi
F

( p̄, q̄) and Bi
F

(p̄, q̄) ∩
(
Pi(x̄) × Zi

)
= ∅,

(ii) [Market Clearing]
∑

i∈I x̄i =
∑

i∈I ei and
∑

i∈I z̄i = 0.

A consumption equilibrium in the financial exchange economy (E,F ) is a list ( p̄, x̄) ∈ RL ×

(RL)I such that there exist (q̄, z̄) ∈ RJ × (RJ)I with
(
p̄, q̄, x̄, z̄

)
is an equilibrium in (E,F ).

We make the following standard assumptions C1-C6 on the consumption side. We denote byA(E)

the set of attainable allocations of the economy, that is,A(E) =
{
(xi)i∈ ∈

∏
i∈I Xi :

∑
i∈I xi =

∑
i∈I ei

}
.

Consumption Assumption C For every i ∈ I and for every x = (xi)i∈I ∈
∏

i Xi

C1 Consumption Sets: Xi is a closed, convex, bounded below subset of RL;

C2 Continuity: The correspondence Pi, from
∏

k∈I Xk to Xi, is lower semicontinuous 5 with

open values in Xi (for the relative topology of Xi);

C3 Convexity: Pi(x) is convex;

C4 Irreflexivity: xi < Pi(x);

C5 Local Non-Satiation LNS:

(a) ∀x ∈ A(E), ∀s ∈ S , ∃ x′i(s) ∈ R`, (x′i(s), xi(−s)) ∈ Pi(x),6

(b) ∀yi ∈ Pi(x), (xi, yi] ⊂ Pi(x);

C6 Consumption Survival CS: ei ∈ intXi.

We note that these assumptions are standard in a model with nonordered preferences; the

assumptions on Pi are satisfied in particular when agents’ preferences are represented by utility

functions that are continuous, strongly monotonic, and quasi-concave. An exchange economy

5 Let Φ be a correspondence from X to Y , that is, Φ is a mapping from X to 2Y . Then Φ is said to be lower

semicontinuous (l.s.c.) at xo ∈ X, if for every open set V ⊂ Y such that Φ(xo) ∩ V , ∅, there exists an open

neighborhood U of xo in X such that Φ(x) ∩ V , ∅ for all every x ∈ U. The correspondence Φ is said to be l.s.c. if it

is l.s.c.at every point of X. Finally, we denote by G(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)} the graph of Φ.
6Given xi ∈ Xi and s ∈ S̄, we denote xi(−s) := (xi(s′))s′,s.
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E satisfying Assumption C will be called standard. We now recall that equilibrium asset prices

preclude arbitrage opportunities under the above Non-Satiation Assumption. We denote by AZ

the asymptotic cone 7 of a nonempty set Z ⊂ RJ.

Proposition 1. Assume LNS and the convexity of the portfolio sets Zi (i ∈ I). If ( p̄, q̄, x̄, z̄) is an

equilibrium of the economy (E,F ), then

(i) (q̄, z̄) is arbitrage-free at p̄ in F in the sense that for every i ∈ I, there is no zi ∈ Zi such

that W( p̄, q̄)zi > W(p̄, q̄)z̄i.

(ii) q̄ is arbitrage-free at p̄, in the sense that

W( p̄, q̄)(
⋃

i

AZi) ∩ RS̄+ = {0} .

We denote by QF (p) the set of arbitrage-free asset prices at p ∈ RL.

2.3. Equivalent and reduced financial structures

We introduce an equivalence relation on the set of all financial structures. We will say that two

financial structures are equivalent if they are indistinguishable in terms of consumption equilibria.

The intuition behind this definition is the following. Financial structures allow agents to transfer

wealth across states of nature and thereby give them the possibility to enlarge their budget set.

Hence if, regardless of the standard exchange economy E, equilibrium consumption allocations

and equilibrium commodity price vectors are the same when agents carry out their financial activi-

ties through two different structures, then we say that these two financial structures are equivalent.

Definition 2. Consider two financial structures F =
(
V, (Zi)i

)
and F ′ =

(
V ′, (Z′i )i

)
. We say that

F ∼ F ′ (read F is equivalent to F ′) if for every standard exchange economy E, the financial

exchange economies (E,F ) and (E,F ′) have the same consumption equilibria.

Definition 3. Let F = (V, (Zi)i) be a standard financial structure. The financial structure F is said

to be reduced if one of the following condition is satisfied.

For every p ∈ RL, LF (p) := A
(∑

i∈IZi ∩ {V(p) ≥ 0}
)
∩ −A

(∑
i∈IZi ∩ {V(p) ≥ 0}

)
= {0}.

7The asymptotic cone of a nonempty subset Z of RJ is the set AZ := {limn λ
nzn : (λn)n ↓ 0 and zn ∈ Z for all n}. As

a consequence from the definition, one has A(clZ) = AZ and we refer to Debreu (1959) for a general reference. When

Z is additionally assumed to be convex, then AZ = 0+(clZ), where 0+(C) :=
{
ζ ∈ RJ : ζ + C ⊂ C

}
is the recession

cone of the convex set C ⊂ RJ (see Rockafellar (1997)). When Z is convex, the inclusion 0+(Z) ⊂ AZ holds but may

be strict when Z is not closed.
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The equivalence between the above conditions is established in Aouani and Cornet (2008).

2.4. The main result

Before stating our main results we introduce our central assumption. It is worthwhile to note

that this assumption is new to the literature on existence of equilibrium.

Assumption F2: (a) Uniformity Assumption: The setAF (p) := A
(∑

i∈I(Zi ∩ {V(p) ≥ 0})
)

does

not depend on p (hence is simply denotedAF hereafter);

(b) Closedness Assumption: Fro all p ∈ RL, the set GF (p) is closed, where

GF (p) :=

(V(p)z1, · · · ,V(p)zI ,
∑
i∈I

zi) ∈ (RS )I × RJ : (zi)i∈I ∈
∏

i

Zi

 .
It is important to notice that every reduced financial structure satisfies Closedness. Sufficient

conditions for the Closedness Assumption to hold are provided in Section 2.6. Given the financial

structure F =
(
V, (Zi)i∈I

)
, we denote ZF :=<

∑
i∈IZi > the linear space spanned by

∑
i∈IZi, that is

the space where financial activity takes place. We can now state the first result of this paper.

Theorem 1. Let F =
(
V, (Zi)i

)
be a standard financial structure satisfying the Uniformity and

Closedness assumptions. Then there exists a standard and reduced financial structure F ′ satisfy-

ing Uniformity, such that, for every standard exchange economy E, every consumption equilibrium

of (E,F ′) is a consumption equilibrium of (E,F ). Moreover we can choose F ′ so that

P (i) ∀p ∈ RL, clQF ′(p) ∩ ZF ′ ⊂ clQF (p) ∩ ZF , and

P (ii) ∀p ∈ RL,∀q ∈ clQF ′(p) ∩ ZF ′ , ∀i ∈ I, ∀zi ∈ Zi, ∃ z′i ∈ Z′i , q · zi = q · z′i .

The proof of Theorem 1 is given in Section 3. We end this section by a converse to Theorem 1.

F0. For all p ∈ RL, and for all i ∈ I, there exists ζi,p ∈ AZi such that V(p)ζi,p � 0.

Theorem 2. Let F =
(
V, (Zi)i

)
be a standard financial structure satisfying Assumption F0, and the

Uniformity and Closedness assumptions. Then there exists a reduced financial structure F ′ such

that F and F ′ are equivalent.

The proof of Theorem 2 is given in Section 4.
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2.5. Existence of equilibria in the nominal and numéraire case

If the financial structure F is nominal, the matrix V(p) of financial payoffs does not depend on

the commodities price vector p and is denoted R.

A numéraire asset is defined as follows. Let us choose a commodity bundle ν ∈ R`, a typical

example being ν = (0, . . . , 0, 1), when the `-th good is chosen as numéraire. A numéraire asset

j is a real asset which delivers the commodity bundle A j
s = R j

sν ∈ R` at state s of date t = 1 if

this state s prevails. Thus the payoff at state s is (Vν) j
s(p) = (p(s) · ν)R j

s for the commodity price

p = (p(s)) ∈ RL. For a numéraire financial structure, i.e., all the assets are numéraire assets (for

the same commodity bundle ν), we denote R the S × J-matrix with entries R j
s and, for p ∈ RL, we

denote Vν(p) the associated S × J-payoff-matrix, which has for entries (Vν) j
s(p) = (p(s) · ν)R j

s, i.e.

Vν(p) =



p(1) · ν 0 · · · 0

0 . . .
. . .

...
...

. . .
. . . 0

0 · · · 0 p(S ) · ν


R.

In the nominal case, the set Q(p) of arbitrage-free prices, that is, the set of asset prices q satisfying−q

R

 (
⋃

i

AZi) ∩ RS̄+ = {0} (2.1)

does not depend on the price p, hence is simply denoted QR. In the numéraire case, under the

Desirability Assumption (made in FN(a)) below, if ( p̄, q̄, x̄, z̄) is an equilibrium, then p̄(s) · ν > 0

for all s ∈ S (see the proof of Lemma 2.1 in Aouani and Cornet (2009)) and we notice that, if

p̄(s) · ν > 0 for all s ∈ S, then Q(p̄) = QR as defined above by (2.1). Thus, every equilibrium asset

price q̄ belongs to QR (by Proposition 1) in the nominal case and in the numéraire case.

To state our second result, we need the following general assumptions on the financial side.

We refer to Aouani and Cornet (2009) for a thorough discussion of these assumptions.

FN Financial Assumption in the Nominal-Numéraire case:

(a) The financial structure F is either (i) nominal, i.e., V(p) = R is independent of p, or (ii)

numéraire, i.e., V(p) = Vν(p), for every agent i, the correspondence Pi has an open graph and the

commodity bundle ν ∈ R` is desirable at every state s ∈ S, i.e., for all x ∈ A(E), for all t > 0,

(xi(s) + tν, xi(−s)) ∈ Pi(x);
11



(b) The financial structure F is standard and satisfies the Closedness Assumption. That is, for

all i ∈ I, Zi is a closed convex set, 0 ∈ Zi, V : RL → RS×J is continuous, and for all p ∈ RL the set

GF (p) is closed;

(c) Financial Survival8 ∀i ∈ I, ∀p ∈ RL, p(0) = 0, ∀q ∈ clQF (p) ∩ ZF , q , 0, ∃ ζi ∈ Zi,

q · ζi < 0.

Theorem 3. Let the economy (E,F ) satisfy assumptions C and FN, then it admits an equilibrium

( p̄, q̄, x̄, z̄) such that || p̄(s)|| = 1 for s ∈ S.

Remark 1. Using the financial structure Fπ given by Theorem 4 below one can easily show that

equilibrium commodity and asset prices p̄ and q̄ satisfy the same conclusion as in the existence

result of Aouani and Cornet (2009), that is, ||p̄(0)|| + ||q̄|| = 1 and ||p̄(s)|| = 1 for s ∈ S.

The proof of Theorem 3 is given in Section 2.7. We can now state some consequences to

Theorem 3. The following Corollary 2 and 3 allow to extend to the case of consumers with

nonordered preferences the existence results of Cass (1984), Duffie (1987), and Werner (1985) in

the nominal case and Geanakoplos and Polemarchakis (1986) in the numéraire case.

Corollary 1. The economy (E,F ) admits an equilibrium under Assumptions C, FN (a) and (b) if

• 0 ∈ intZi for all i.

Corollary 2. The economy (E,F ) admits an equilibrium under Assumption C if

• F consists of nominal assets;

• Zi = RJ for all i.

Corollary 3. The economy (E,F ) admits an equilibrium under Assumption C if

• F consists of numéraire assets and satisfies FN(a)(ii);

• Zi = RJ for all i.

Corollary 4. The economy (E,F ) admits an equilibrium under Assumptions C, FN (a) and (c) if

• For all i, Zi is a polyhedral set.9

8This assumption can be weakened to the following: ∀i ∈ I, ∀q ∈ clQR ∩ ZF , q , 0, ∃ζi ∈ Zi, q · ζi < 0.
9We say that Z ⊂ RJ is a convex polyhedral set if it can be defined by finitely many linear inequalities, i.e.,

Z :=
{
z ∈ RJ : Bz ≥ b

}
for some K × J-matrix B and some b ∈ RK .
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2.6. Examples of restrictions satisfying the Closedness Assumption

As shown by the following Propositions 2 and 3, the Closedness Assumption holds true in

many situations. Indeed, Closedness is fulfilled when restrictions on portfolio choices are given

by a finite number of linear inequalities, that is, when all portfolio sets are finite intersections of

half spaces. In particular, Closedness is fulfilled when portfolio sets are linear subspaces, when

portfolio sets are unconstrained, or when there is an exogenous bound on portfolio short sales.

Furthermore, the Closedness Assumption holds true under the no mutually compatible potential

arbitrage condition (Page, 1987) that is when the family {AZi ∩ ker V, i ∈ I} is positively semi-

independent10, in particular Closedness holds true under Siconolfi (1989)’s assumption (AZi ∩

ker V = {0} for all i ∈ I), when portfolio sets are bounded, or when there are no redundant assets

i.e. rankV = J.

Proposition 2. The Closedness Assumption holds true under anyone of the following conditions.

(a) For all i ∈ I, Zi = RJ (unconstrained portfolios).

(b) For all i ∈ I, Zi is a linear subspace.

(c) For all i ∈ I, Zi = zi + RJ
+, for some zi ∈ −R

J
+ (exogenous bounds on short sales).

(d) For all i ∈ I, Zi is polyhedral.

(e) For all i ∈ I, Zi = BJ(0, 1) (bounded portfolio sets).

(f) For all i ∈ I, Zi = Ki + Pi where Ki is nonempty compact and convex, and Pi is polyhedral.

The proof of Proposition 2 is given in Section 6.2.

Proposition 3. The Closedness Assumption holds true under each of the following conditions.

(g) There are no redundant assets i.e. ∀p ∈ RL, rank(V) = J, or equivalently, ker V(p) = {0}.

(h) For all p ∈ RL and for all i ∈ I, AZi ∩ ker V(p) = {0}.

(i1) For all p ∈ RL, A
(∑

i∈IZi ∩ {V(p) ≥ 0}
)
∩ −A

(∑
i∈IZi ∩ {V(p) ≥ 0}

)
= {0}.

(i2) For all p ∈ RL, A
(∑

i∈IZi ∩ ker V(p)
)
∩ −A

(∑
i∈IZi ∩ ker V(p)

)
= {0}.

(i3) For all p ∈ RL,
(∑

i∈IAZi ∩ {V(p) ≥ 0}
)
∩ −

(∑
i∈IAZi ∩ {V(p) ≥ 0}

)
= {0}.

10A finite collection {Ci, i ∈ I} of nonempty convex cones in Rn is positively semi-independent if ci ∈ Ci, for all

i ∈ I and
∑

i∈Ici = 0, imply that for all i ∈ I, ci = 0.

13



(i4) For all p ∈ RL,
(∑

i∈IAZi ∩ ker V(p)
)
∩ −

(∑
i∈IAZi ∩ ker V(p)

)
= {0}.

(j1) For all p ∈ RL, the family {AZi ∩ {V(p) ≥ 0} : i ∈ I} is positively semi-independent.

(j2) For all p ∈ RL, the family {AZi ∩ ker V(p) : i ∈ I} is positively semi-independent.

(k1) For all p ∈ RL, the family {AZi ∩ {V(p) ≥ 0} , i ∈ I} is weakly positively semi-independent.11

(k2) For all p ∈ RL, the family {AZi ∩ ker V(p), i ∈ I} is weakly positively semi-independent.

The proof of Proposition 3 is given in Section 6.3. In Section 2.6.1, we provide an example

of a financial structure satisfying The Closedness Assumption without satisfying any of the above

conditions of Proposition 2 and Proposition 3.

2.6.1. An example

We now provide an example of a financial structure satisfying Assumption F2 without satisfy-

ing any of the conditions in Proposition 2 and Proposition 3. Consider two agents, two states of

nature at the second period, and three assets i.e. I = S = 2, and J = 3. Let the return matrix be

given by

V =

 1 0 0

−1 0 0

 .
Let agents’ portfolio sets be given by (note that Z1 is not polyhedral)

Z1 =
{
(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≥ 0, z2

3 ≤ (z1 + 1)z2

}
,

Z2 =
{
(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≤ 0, z3 = 0

}
.

Then the collection {AZi ∩ {V ≥ 0} : i ∈ 1, 2} is not WPSI and F =
(
V, (Zi)i=1,2

)
satisfies the

Closedness Assumption. Details are provided in Section 6.4

2.6.2. Equivalent formulations of the Closedness Assumption

Let F =
(
V, (Zi)i

)
be a financial structure and, for p ∈ RL, denote

G′
F

(p) :=

((vi)i,
∑
i∈I

zi

)
∈ (RS )I × RJ : ∀i ∈ I, zi ∈ Zi,V(p)zi ≥ vi

 .
11A finite collection {Ci, i ∈ I} of nonempty convex cones of Rn is weakly positively semi-independent if ci ∈ Ci

for all i ∈ I and
∑

i∈Ici = 0 imply that for all i ∈ I, ci ∈ Ci ∩ −Ci.
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Proposition 4. The set GF (p) is closed if and only if the set G′
F

(p) is closed.

The proof of Proposition 4 is given in Section 6.5. Consider a financial structure F = (V, (Zi)i).

Given p ∈ RL, let Φp and Ψp be the correspondences from RS I into RJ defined by

Φp(v1, · · · , vI) :=
∑
i∈I

(
Zi ∩ {V(p) = vi}

)
,

Ψp(v1, · · · , vI) :=
∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
.

Then the graph of the correspondence Φp is precisely the set GF (p) i.e. G(Φp) = GF (p).

Similarly, one has G(Ψp) = G′
F

(p). Hence, the Closedness Assumption is equivalent to Φp and Ψp

having closed graphs for all p ∈ RL.

2.7. Proof of the equilibrium existence result (Theorem 3)

2.7.1. The nominal case

This section considers the case of a financial structure F = (V, (Zi)i) with nominal assets

satisfying Assumption FN, and in fact the more general case of a standard financial structure

satisfying the Uniformity, Closedness and Financial Survival assumptions. This more general

framework is needed in Section 2.7.2 to treat the case of numéraire assets.

By Theorem 1, there exists a standard and reduced financial structure F ′ satisfying Uniformity

and property P, such that every consumption equilibrium of (E,F ′) is a consumption equilibrium

of (E,F ). Claim 2.1 below, shows that F ′ satisfies the conditions of Theorem 2 in Aouani and

Cornet (2009). This allows us to apply the latter existence result to the financial exchange economy

(E,F ′) and to conclude to the existence of an equilibrium in (E,F ′). Then (E,F ) has an equilib-

rium since every consumption equilibrium of (E,F ′) is a consumption equilibrium of (E,F ).

Claim 2.1. If F = (V, (Zi)i) is standard and satisfies Uniformity, Closedness and Financial Sur-

vival, then the financial structure F ′ provided by Theorem 1 is standard and satisfies: Financial

Survival, the set AF ′(p) does not depend on p, and AF ′ ∩ −AF ′ = {0}.

Proof. Standard: The financial structure F ′ is clearly standard (as a result from Theorem 1).

Financial Survival: Let q ∈ clQF ′(p) ∩ ZF ′\ {0}. Then, by Theorem 1 (more precisely, by

property P(i)), q ∈ clQF (p) ∩ ZF \ {0} and by Financial Survival in F , for every i ∈ I, there exists
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zi ∈ Zi such that q · zi < 0. Hence, again by Theorem 1 (more precisely, by property P(ii)), for each

i ∈ I, there exists z′i ∈ Z′i such that q · z′i = q · zi < 0.

For every p ∈ RL, AF ′(p)∩−AF ′(p) = {0}: From Theorem 1, we haveAF ′(p)∩−AF ′(p) = {0}.

Recalling that the latter condition is equivalent to AF ′(p)∩−AF ′(p) = {0} (see Aouani and Cornet

(2008)), we get the desired result.

AF ′(p) does not depend on p: From the previous step AF ′(p) ∩ −AF ′(p) = {0}, thus the cones

AZ′i ∩ {V(p) ≥ 0} are weakly positively semi-independent. Hence AF ′(p) = AF ′(p) (see Theorem

9.1 page 73 in Rockafellar (1997)). Recalling that, by Theorem 1, F ′ satisfies Uniformity, we

conclude that AF ′(p) does not depend on p.

2.7.2. The numéraire case

Consider a financial economy with numéraire assets (E, F ) satisfying Assumption FN (Part

(ii) with numéraire assets). The proof of Theorem 3 consists in applying the result of the previous

section to a modified financial economy (E, F ε) (for ε > 0 small enough), chosen so that (i) the

financial structure F ε is standard and satisfies Uniformity, Closedness and Financial Survival, and

(ii) the equilibria of (E, F ε) are also equilibria of the original financial economy (E,F ).

Step 0. We define the modified financial structure F ε = (Vε, (Zi)i) for ε > 0, by taking the

same portfolio sets Zi as for F and defining the modified payoff matrix Vε, by

Vε(p) =



max {ε, p(1) · ν} 0 · · · 0

0 . . .
. . .

...
...

. . .
. . . 0

0 · · · 0 max {ε, p(S ) · ν}


R.

The financial structure F ε is standard and satisfies Uniformity, Closedness and Financial Sur-

vival whenever the financial structure F satisfies Assumption FN. Indeed, {Vε(p) ≥ 0} = {R ≥ 0}

for every p ∈ RL, hence F ε satisfies Uniformity. Closedness is obviously satisfied, and Financial

Survival in Fπ is a consequence of Financial Survival in F and the fact that QF ε(p) = QR for every

p. The relationship between the equilibria of the economies (E,F ε) and (E,F ) is then given by

the following lemma, the proof of which can be found in Aouani and Cornet (2009).
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Lemma 2.1. For ε > 0 small enough, every equilibrium (p̄, q̄, x̄, z̄) of (E,F ε) such that || p̄(s)|| = 1

for s ∈ S is an equilibrium of the economy (E,F ).

3. Proof of Theorem 1

3.1. A sharper result

Let F =
(
V, (Zi)i

)
be a standard financial structure satisfying Uniformity and Closedness. We

consider the financial structure Fπ which has the same payoff matrix as F and the portfolio sets

clπZi (i ∈ I) where π is the orthogonal projection mapping12 of RJ on the orthogonal space to

LF := AF ∩ −AF . We recall that ZF :=< ∪iZi >, ZFπ :=< ∪iclπZi > and the definition of Fπ can

be summarized by Fπ =
(
V, (clπZi)i

)
, where

π = proj(LF )⊥ , LF := AF ∩ −AF , andAF := A
(∑

i∈I

(Zi ∩ {V(p) ≥ 0})
)
⊂ ZF .

Note that LF ⊂ ker V(p) for all p ∈ RL. We will use extensively the following properties 13 of the

linear mapping π: for all (p, q, z) ∈ RL × RJ × RJ,

q · πz = πq · πz = πq · z, ker π = LF , V(p)πz = V(p)z, hence W(p, q)πz = W(p, πq)z. (3.1)

Theorem 1 is a direct consequence of the following theorem.

Theorem 4. Let F =
(
V, (Zi)i

)
be a standard financial structure satisfying the Uniformity and

Closedness Assumptions. Then

(a) The financial structure Fπ is standard and reduced, and satisfies Uniformity.

(b) For every standard exchange economy E, if (E,Fπ) has an equilibrium (p̄, q̄, x̄, ȳ), then

there exists z∗ ∈
∏

i Zi such that ( p̄, πq̄, x̄, z∗) is an equilibrium of (E,F ).

(c) The financial structure Fπ satisfies the following property P.

P (i) ∀p ∈ RL, clQF ′(p) ∩ ZF ′ ⊂ clQF (p) ∩ ZF , and

P (ii) ∀p ∈ RL,∀q ∈ clQF ′(p) ∩ ZF ′ , ∀i ∈ I, ∀zi ∈ Zi, ∃ z′i ∈ Z′i , q · zi = q · z′i .

12When L is a subset of RJ , we define the orthogonal set to L by L⊥ :=
{
z ∈ RJ : z · ξ = 0 for all ξ ∈ L

}
. When L is

a linear space and ϕ ∈ RJ , we denote by projLϕ (resp. projL⊥ϕ) the orthogonal projection of ϕ on L (resp. on L⊥), that

is, the unique α ∈ L (resp. β ∈ L⊥) such that ϕ − α ∈ L⊥ (resp. ϕ − β ∈ L).
13The first equality comes from the fact that πq · πz = πq · z, since πq ∈ Imπ and z − πz ∈ ker π = (Imπ)⊥ since

π is an orthogonal projection mapping; then by symmetry q · πz = πq · πz = πq · z. The second one holds since

z − πz ∈ ker π = LF and LF := AF ∩ −AF ⊂ {V(p) ≥ 0} ∩ − {V(p) ≥ 0} = ker V(p).
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The proof of Theorem 4 is given in Section 3.3. The proof is provided under two assumptions

that are weaker than the Closedness Assumption. We consider the following two conditions:

F2α. For all p ∈ RL, clG(Φp) ∩
(
RS I × {0RJ }

)
⊂ G(Φp).

F2a. For all p ∈ RL, and for all v = (vi)i∈I ∈ (RS )I such that
∑

i∈I(Zi ∩ {V(p) ≥ vi}) , ∅, the

space A
(∑

i∈I(Zi ∩ {V(p) ≥ vi})
)
∩ −A

(∑
i∈I(Zi ∩ {V(p) ≥ vi})

)
does not depend on v.

By Section 2.6.2 the Closedness Assumption is equivalent to G(Φp) being closed for every p ∈

RL. Hence, Assumption F2α is clearly a consequence of Closedness. The following proposition

whose proof is given in Section 6.6 shows that F2a is as well a consequence of the Closedness

Assumption.

Proposition 5. Let F =
(
V, (Zi)i

)
be a standard financial structure. Under the Closedness As-

sumption, for every v = (vi)i∈I ∈ (RS )I such that
∑

i∈I(Zi ∩ {V(p) ≥ vi}) , ∅, the space LF (p, v) :=

A
(∑

i∈I(Zi ∩ {V(p) ≥ vi})
)
∩ −A

(∑
i∈I(Zi ∩ {V(p) ≥ vi})

)
does not depend on v.

In the next section we state and prove two lemmas which will be useful in the sequel.

3.2. Preliminary lemmas

Lemma 3.1. Let F =
(
V, (Zi)i

)
be standard and satisfies Uniformity and F2a. For all p ∈ RL and

for all (ŷi)i∈I ∈
∏

i clπZi such that
∑

i∈Iŷi = 0, one has∑
i∈I

(
clπZi ∩ {V(p) ≥ V(p)ŷi}

)
⊂ cl

∑
i∈I

(
Zi ∩ {V(p) ≥ V(p)ŷi − ε}

)
,∀ε � 0. Hence LFπ ⊂ LF .

We prepare the proof by a claim.

Claim 3.1. Let F = (V, (Zi)i) be standard and satisfies Uniformity and F2a. For all p ∈ RL and

for all (vi)i∈I ∈ (RS )I , one has∑
i∈I

cl
(
πZi ∩ {V(p) ≥ vi}

)
⊂ cl

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
.

Proof. If
∑

i∈I
(
πZi ∩ {V(p) ≥ vi}

)
= ∅ then there is nothing to prove. Otherwise, we show that∑

i∈I

(
πZi ∩ {V(p) ≥ vi}

)
=

∑
i∈I

π
(
Zi ∩ {V(p) ≥ vi}

)
(3.2)

⊂ ker π +
∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
(3.3)

⊂ cl
(∑

i∈I

(
Zi ∩ {V(p) ≥ vi}

))
. (3.4)
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To prove the equality (3.2), it suffices to notice that for every i ∈ I, πZi ∩ {V(p) ≥ vi} =

π(Zi ∩ {V(p) ≥ vi}). Indeed, let yi ∈ πZi ∩ {V(p) ≥ vi}, then there exists zi ∈ Zi such that yi = πzi,

and V(p)yi ≥ vi. But V(p)zi = V(p)yi + V(p)(zi − πzi) = V(p)yi (since zi − πzi ∈ ker π ⊂ LF and

obviously LF ⊂ ker V(p)). Then zi ∈ Zi ∩ {V(p) ≥ vi} and Consequently yi ∈ π(Zi ∩ {V(p) ≥ vi}).

The proof of the converse inclusion is similar.

To prove the inclusion (3.3), let y =
∑

i∈Iπzi with zi ∈ Zi∩{V(p) ≥ vi}. Then y = πz = (πz−z)+z

with πz − z ∈ ker π and z =
∑

i∈Izi ∈
∑

i∈I(Zi ∩ {V(p) ≥ vi}). This ends the proof of the inclusion of

(3.3).

The second inclusion (3.4) comes from the fact that

ker π ⊂ LF = A
(∑

i∈I

(Zi ∩ {V(p) ≥ vi})
)
∩ −A

(∑
i∈I

(Zi ∩ {V(p) ≥ vi})
)
⊂ A

(∑
i∈I

(Zi ∩ {V(p) ≥ vi})
)
,

where the first inclusion holds by assumption, the equality comes from Assumption F2a and Uni-

formity, and the last inclusion is immediate. Consequently,

ker π +
∑
i∈I

(Zi ∩ {V(p) ≥ vi}) ⊂ A
(∑

i∈I

(Zi ∩ {V(p) ≥ vi})
)

+
∑
i∈I

(Zi ∩ {V(p) ≥ vi})

⊂ cl
∑
i∈I

(Zi ∩ {V(p) ≥ vi}).

Using the above result (3.4) and recalling that for a finite family of sets Ai ⊂ Rk, (i ∈ I), one

always has
∑

i∈IclAi ⊂ cl(
∑

i∈IAi), we get∑
i∈I

cl
(
πZi ∩ {V(p) ≥ vi}

)
⊂ cl

∑
i∈I

(
πZi ∩ {V(p) ≥ vi}

)
⊂ cl

∑
i∈I

(
Zi ∩ {V(p) ≥ vi}

)
.

This ends the proof of the claim.

Proof of Lemma 3.1

Let yi ∈ (clπZi) ∩ {V(p) ≥ V(p)ŷi} (i ∈ I). Fix ε � 0. Take vn
i ↑ V(p)ŷi such that V(p)ŷi � vn

i

for every n and note that for n large enough vn
i � V(p)ŷi − ε. Pick ȳi ∈ riπZi and consider yn

i =

(1−λn)yi +λ
nȳi with 0 < λn < 1

n small enough so that V(p)yn
i � vn

i . Then yn
i ∈ [ȳi, yi) ⊂ riπZi since

yi ∈ clπZi and ȳi ∈ riπZi (Theorem 6.1 page 45 in Rockafellar (1997)). Thus yn
i ∈ πZi∩

{
V(p) ≥ vn

i

}
,

so yn
i ∈ πZi ∩ {V(p) ≥ V(p)ŷi − ε} for n large enough. Hence yi ∈ cl

(
πZi ∩ {V(p) ≥ V(p)ŷi − ε}

)
.

That is,
∑

i∈Iyi ∈
∑

i∈Icl
(
πZi ∩ {V(p) ≥ V(p)ŷi − ε}

)
. Therefore, by Claim 3.1,∑

i∈I

yi ∈ cl
∑
i∈I

(
Zi ∩ {V(p) ≥ V(p)ŷi − ε}

)
.
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This completes the proof of the first part of the lemma. Taking ŷi = 0 for each i ∈ I, one

has for every ε � 0,
∑

i∈I

(
(clπZi) ∩ {V(p) ≥ 0}

)
⊂ cl

∑
i∈I

(
Zi ∩ {V(p) ≥ −ε}

)
. Hence, LFπ ⊂

A
(
cl
∑

i∈IZi ∩ {V(p) ≥ −ε}
)
∩ −A

(
cl
∑

i∈IZi ∩ {V(p) ≥ −ε}
)

= LF (by Uniformity and Assumption

F2a). This ends the proof of the lemma.

Given the financial structure F and given p ∈ RL, we denote

WF (p) :=

(W(p, q)z1, · · · ,W(p, q)zI

)
: (zi)i ∈

∏
i

Zi,
∑
i∈I

zi = 0, and (q, z) is arbitrage-free at p

 .
Lemma 3.2. Let F =

(
V, (Zi)i

)
be standard and satisfies Uniformity, F2a, and F2α. The financial

structure Fπ satisfies WFπ(p) ⊂ WF (p) for all p ∈ RL.

Proof. We show that if (q, y) is arbitrage-free at p in Fπ and
∑

i∈Iyi = 0, then there exists a mutually

compatible portfolio allocation z∗ ∈
∏

i Zi such that W(p, q)yi = W(p, πq)z∗i for every i ∈ I and

(πq, z∗) is arbitrage-free at p. Let
(
q, (yi)i

)
∈ RJ × (

∏
i clπZi) be arbitrage-free in Fπ and such that∑

i∈Iyi = 0. Then, by Lemma 3.1,

0 =
∑
i∈I

yi ∈
∑
i∈I

(
(clπZi) ∩ {V(p) ≥ V(p)yi}

)
⊂

⋂
ε�0

cl
∑
i∈I

(
Zi ∩ {V(p) ≥ V(p)yi − ε}

)
.

Then for every n ≥ 1 and for every i ∈ I, there exists zn
i ∈ Zi,V(p)zn

i ≥ V(p)yi −
1
n1, and∑

i∈Izn
i = 0. For each i ∈ I, the sequence (V(p)zn

i )n is bounded below, moreover
∑

i∈IV(p)zn
i = 0,

hence for each i ∈ I, the sequence (V(p)zn
i )n is bounded. We can therefore assume that for each

i ∈ I, the sequence (V(p)zn
i )n converges (use subsequences if necessary) to wi ∈ RS satisfying

wi ≥ V(p)yi. Then (w1, · · · ,wI , 0) = limn(V(p)zn
1, · · · ,V(p)zn

I ,
∑

i∈Izn
i ) ∈ clG(Φp)∩

(
(RS )I × {0RJ }

)
.

By F2α, (w1, · · · ,wI , 0) ∈ G(Φp) = GF (p). Therefore, for each i ∈ I, there exists z∗i ∈ Zi

such that
∑

i∈Iz∗i = 0 and V(p)z∗i = wi ≥ V(p)yi. Since V(p)z∗i = wi ≥ V(p)yi for every i, and∑
i∈IV(p)(z∗i − yi) = 0 (because

∑
i∈I(z∗i − yi) = 0), we conclude that V(p)z∗i = V(p)yi for every i.

Now, we show that, for every i, πq · z∗i = πq · yi (which, by (3.1), is equal to q · πyi). Let us first

note that it suffices to show that for every i ∈ I, −πq · z∗i ≤ −πq · yi. In this case −πq · (
∑

i∈Iz∗i −∑
i∈Iyi) = 0 implies πq · z∗i = πq · yi, for every i. Suppose, that for some i, −πq · z∗i > −πq · yi. Since

V(p)z∗i = V(p)yi, one has W(p, πq)z∗i > W(p, πq)yi. Then from (3.1) W(p, q)πz∗i > W(p, q)πyi.

Moreover πz∗i ∈ πZi ⊂ clπZi. It thus suffices to show that πyi = yi to get W(p, q)πz∗i > W(p, q)yi

which would contradict the assumption that (q, y) is arbitrage-free in Fπ. Since yi ∈ clπZi, one has

yi = limn πyn
i with yn

i ∈ Zi. Then πyi = π limn πyn
i = limn π(πyn

i ) = limn πyn
i = yi.
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Finally, we show that (πq, z∗) is arbitrage-free at p in F . Assume that for some i ∈ I, there

exists z̄i ∈ Zi such that W(p, πq)z̄i > W(p, πq)z∗i . Then from (3.1) W(p, q)πz̄i > W(p, q)yi. A

contradiction to the fact that (q, y) is arbitrage-free at p in Fπ.

3.3. Proof of Theorem 4

3.3.1. Proof of Part (a) of Theorem 4

Fπ is obviously standard.

Fπ satisfies Uniformity: We show that for all p ∈ RL, π(AF (p)) = AFπ(p) and the desired

result follows from the fact that F satisfies Uniformity. For the first inclusion: we have

π
(
AF (p)

)
⊂ Aπ

∑
i∈I

(Zi ∩ {V(p) ≥ 0}) = A
∑
i∈I

πZi ∩ {V(p ≥ 0)} ⊂ AFπ(p).

The first inclusion follows from π(AC) ⊂ A(πC) (see Rockafellar (1997)). The equality comes

from (3.2). The last inclusion comes from “C1 ⊂ C2 ⇒ AC1 ⊂ AC2”.

For the converse inclusion: From Lemma 3.1, taking ŷi = 0 for all i ∈ I, and then the asymp-

totic cones of both sides of the inclusion we get AFπ(p) ⊂ AF (p). Thus π
(
AFπ(p)

)
⊂ π

(
AF (p)

)
,

and it suffices to notice thatAFπ(p) ⊂ Imπ to conclude thatAFπ(p) ⊂ π
(
AF (p)

)
.

Fπ is reduced: First, we claim that LFπ ⊂ LF ∩ Imπ. Indeed, we clearly have LFπ ⊂ Imπ since∑
i∈I

(
clπZi ∩ {V(p) ≥ 0}

)
⊂ Imπ, and by Lemma 3.1, LFπ ⊂ LF . This ends the proof of the claim.

Since LF = ker π, then from the above claim, we get LFπ ⊂ LF ∩ Imπ = ker π ∩ Imπ = {0} . This

ends the proof of Part (a) of Theorem 4.

3.3.2. Proof of Part (b) of Theorem 4

We show that if (E,Fπ) has an equilibrium ( p̄, q̄, x̄, ȳ), then there exists z∗ ∈
∏

i Zi such that

( p̄, πq̄, x̄, z∗) is an equilibrium of (E,F ). Let (p̄, q̄, x̄, ȳ) be an equilibrium in (E,Fπ). Then by

Proposition 1, (q̄, ȳ) is arbitrage-free at p̄ in Fπ, and by Lemma 3.2, for each i, there exists z∗i ∈ Zi

such that W(p̄, πq̄)z∗i = W(p̄, q̄)ȳi,
∑

i∈Iz∗i = 0, and (πq̄, z∗) is arbitrage-free at p̄ in F . We show

that (p̄, πq̄, x̄, z∗) is an equilibrium of (E,F ). First, from W(p̄, πq̄)z∗i = W( p̄, q̄)ȳi for each i ∈ I, we

conclude that (x̄i, z∗i ) ∈ Bi
F

(p̄, πq̄) since (x̄i, ȳi) ∈ Bi
Fπ

( p̄, q̄). To complete the proof, we need only

show that for each i ∈ I,

Bi
F

( p̄, πq̄) ∩
(
Pi(x̄) × Zi

)
= ∅.
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Since ( p̄, q̄, x̄, z̄) is an equilibrium of (E,Fπ), we have

Bi
Fπ

( p̄, q̄) ∩
(
Pi(x̄) × clπZi

)
= ∅.

In view of the above, the proof will be completed if we show that if (xi, zi) ∈ Bi
F

( p̄, πq̄), then

(xi, πzi) ∈ Bi
Fπ

( p̄, q̄). This is true since W( p̄, πq̄)zi = W(p̄, q̄)πzi by (3.1).

3.3.3. Proof of Part (c) of Theorem 4

We claim that, for every p ∈ RL,

QFπ(p) ∩ Z(Fπ) ⊂ QF (p) ∩ ZF (3.5)

First, we show that QFπ(p)∩ Z(Fπ) ⊂ QFπ(p)∩ Imπ ⊂ QF (p). The first inclusion is a consequence

of the fact that Z(Fπ) ⊂ Imπ. We prove the second inclusion by contradiction. Assume that there

is some q ∈ QFπ(p) ∩ Imπ such that q < QF (p). Then there exists i ∈ I and ζi ∈ AZi such that

W(p, q)ζi > 0. But πζi ∈ π(AZi) ⊂ A(πZi) (from Rockafellar (1997)) and (since q ∈ Imπ implies

q = πq), from (3.1) W(p, q)(πζi) = W(p, q)ζi > 0, which contradicts the fact that q ∈ QFπ(p).

This ends the proof of the two inclusions. We end the proof of (3.5) by showing that Z(Fπ) ⊂ ZF .

Indeed, let y ∈ Z(Fπ), then y = πz for some z ∈ ZF and y = πz = πz− z + z ∈ ker π+ ZF ⊂ ZF since

ker π ⊂ LF ⊂ ZF .

We turn now to the proof of Part (c) of Theorem 4. The inclusion (3.5) implies that Fπ satisfies

property P(i). We need only show that Fπ satisfies property P(ii). Let q ∈ clQFπ(p) ∩ ZFπ , i ∈ I,

and zi ∈ Zi. Then πzi ∈ clπZi and q · πzi = q · zi by (3.1) and using the fact that πq = q because

q ∈ QFπ(p) ∩ ZFπ ⊂ Imπ. This ends the proof of Theorem 4.

4. Proof of Theorem 2

Let F =
(
V, (Zi)i

)
be a standard financial structure satisfying assumptions F0, Uniformity

and Closedness, and let π be an orthogonal projection mapping of RJ on the orthogonal space

to LF . Denote Fπ :=
(
V, (clπZi)i

)
. We show that F and Fπ are equivalent. By Theorem 4, for

every exchange economy E satisfying Assumption C, every consumption equilibrium of (E,Fπ)

is a consumption equilibrium of (E,F ). To end the proof of Theorem 2, we show that for every

exchange economy E satisfying Assumption C, if (E,F ) has an equilibrium (p∗, q∗, x∗, y∗), then

(p∗, πq∗, x∗, πz∗) is an equilibrium of (E,Fπ).
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4.1. Preliminary lemmas

We need two Lemmas.

Lemma 4.1. Let F = (V, (Zi)i) be a standard financial structure satisfying F0 and Uniformity. If

(q̄, z̄) is arbitrage-free at p̄ in F then q̄ ∈ −
(
A
∑

i∈I(Zi ∩ {V( p̄) ≥ 0})
)o
. Hence q̄ ∈ L⊥

F
.

Proof. By contraposition. Let (q̄, z̄) be arbitrage-free at p̄ in F and suppose that q̄ < −
(
A
∑

i∈I(Zi∩

{V(p̄) ≥ 0})
)o

. Then there exists ζ ∈ A
∑

i∈I(Zi∩{V( p̄) ≥ 0}) such that −q̄·ζ > 0. Thus, for every n ∈

N, n2ζ =
∑

i∈Izn
i for some zn

i ∈ Zi∩{V(p̄) ≥ 0}. Therefore −q̄ ·
∑

i∈I(zn
i /n) = −nq̄ ·ζ −→

n→∞
+∞. Hence,

without any loss of generality, one can assume that for some agent, say i = 1, −q̄ · (zn
1/n) −→

n→∞
+∞.

By F0, there exists ξ1 ∈ AZ1 such that V( p̄)ξ1 � 0. Define

ζn
1 :=

1
n

zn
1 + (1 −

1
n

)(z̄1 + ξ1).

We end the proof by showing that (i) ζn
1 ∈ Z1, and (ii) for n large enough, W( p̄, q̄)ζn

1 > W( p̄, q̄)z̄1.

In other words, we show that ζn
1 is an arbitrage opportunity for agent 1 at z̄1 in F , which is a

contradiction to the fact that (q̄, z̄) is arbitrage-free at p̄ in F . First, since ξ1 ∈ AZ1, one has

z̄1 + ξ1 ∈ Z1, and since zn
1 ∈ Z1 and z̄1 + ξ1 ∈ Z1, the convexity of Z1 (since F is standard) allows

to conclude that ζn
1 belongs to Z1. Second, since −q̄ · (zn

1/n) −→
n→∞

+∞, one has, for n large enough

−q̄ · ζn
1 = −q̄ · 1

nzn
1 + −q̄ · (1 − 1

n )(z̄1 + ξ1) > −q̄ · z̄1.

Finally, since zn
1 ∈ {V( p̄) ≥ 0} and V(p̄)ξ1 � 0, one has, for n large enough

V(p̄)ζn
1 = V( p̄)

(1
n

zn
1 + (1 −

1
n

)(z̄1 + ξ1)
)
≥ (1 −

1
n

)V( p̄)(z̄1 + ξ1) � V(p̄)z̄1.

Hence, for n large enough, W( p̄, q̄)ζn
1 > W( p̄, q̄)z̄1. This ends the proof of the claim.

Lemma 4.2. Assume that for all s ∈ S̄, p(s) , 0 and for all i ∈ I, ei ∈ intXi, then

Bi
Fπ

(p, q) = cl {(x, y) ∈ Xi × πZi : p (x − ei) � W(p, q)y} .

Proof. We first claim that there exists δ = (δ(s))s∈S̄ ∈ RL such that (i) ei − δ ∈ Xi and (ii)

p(s) · δ(s) > 0 for every s ∈ S̄. Indeed, take δ = λp for λ > 0 small enough so that ei − δ ∈ Xi,

using the fact that ei ∈ intXi. Then, for all s ∈ S̄, p(s) · δ(s) = λp(s) · p(s) > 0, since p(s) , 0. Let

(xi, yi) ∈ Bi
Fπ

(p, q). Let α ∈ (0, 1). Then xαi := αxi + (1 − α)(ei − δ) ∈ Xi since xi ∈ Xi, ei − δ ∈ Xi

and Xi is convex, and αyi ∈ clπZi since 0 ∈ clπZi, yi ∈ clπZi, and clπZi is convex. We claim that,

p (xαi − ei) −W(p, q)(αyi) � 0.
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Indeed, p (xαi − ei) − W(p, q)(αyi) = α
(
p (xi − ei) − W(p, q)yi

)
− (1 − α)p δ. Since (xi, yi) ∈

Bi
Fπ

(p, q), i.e., p (xi−ei)−W(p, q)yi ≤ 0, and α > 0, the first term is nonpositive. Since p δ � 0

(from above) and α < 1, the second term satisfies −(1 − α)p δ � 0. This ends the proof of the

claim. Consequently, there exists yαi ∈ πZi such that ||yαi − yi|| ≤ (1 − α)||yi|| and

p (xαi − ei) −W(p, q)yαi � 0.

Noticing that, (xαi , y
α
i )→ (xi, yi) when α→ 1, we get the desired result.

4.2. Proof of Theorem 2

We show that if (E,F ) has an equilibrium (p∗, q∗, x∗, z∗), then (p∗, πq∗, x∗, πz∗) is an equilibrium

of (E,Fπ). Let (p∗, q∗, x∗, z∗) be an equilibrium in (E,F ). The asset market clearing condition in

(E,Fπ):
∑

i∈Iπz∗i = 0 is a direct consequence of
∑

i∈Iz∗i = 0. First, we show that for each i ∈ I,

(x∗i , πz∗i ) ∈ Bi
Fπ

(p∗, πq∗). It suffices to show that W(p∗, πq∗)πz∗i = W(p∗, q∗)z∗i . From (3.1) we have

W(p∗, πq∗)πz∗i = W(p∗, q∗)πz∗i . Recall that by Proposition 1, (q∗, z∗) is arbitrage-free at p∗ in F .

Thus by Lemma 4.1, q∗ ∈ L⊥
F

. Hence q∗ ∈ (ker π)⊥ since ker π ⊂ LF . Therefore q∗ · πz∗i = q∗ · z∗i
and W(p∗, q∗)πz∗i = W(p∗, q∗)z∗i , recalling that V(p∗)πz∗i = V(p∗)z∗i from (3.1). We now show that

for each i ∈ I, (x∗i , πz∗i ) solves agent i’s problem in (E,Fπ). Suppose on the contrary that for some

agent, say i = 1, there exists (x1, z1) ∈ B1
Fπ

(p∗, πq∗) such that x1 ∈ P1(x∗). Recall that by LNS

one has p∗(s) , 0 for all s ∈ S̄. From the above Lemma 4.2, (x1, z1) = limn(xn
1, πzn

1) for some

sequences (xn
1)n ⊂ X1 and (zn

1)n ⊂ Z1 such that

p∗ (xn
1 − e1) −W(p∗, πq∗)(πzn

1) ≤ 0.

We have W(p∗, πq∗)(πzn
1) = W(p∗, q∗)(πzn

1) = W(p∗, q∗)(zn
1) (the first equality comes from (3.1) and

the second equality is a consequence of the fact that under Assumption F0, q∗ ∈ L⊥
F

by Lemma

4.1 and therefore q∗ ∈ (ker π)⊥ since ker π ⊂ LF ). Consequently (from above),

p∗ (xn
1 − e1) −W(p∗, q∗)zn

1 = p∗ (xn
1 − e1) −W(p∗, πq∗)(πzn

1) ≤ 0.

Hence (xn
1, z

n
1) ∈ B1

F
(p∗, q∗). Recalling that x1 ∈ P1(x∗), x1 = limn xn

1 and using the fact that P1(x∗)

is open, we deduce that for n large enough xn
1 ∈ P1(x∗) . The two assertions (xn

1, z
n
1) ∈ B1

F
(p∗, q∗)

and x1 ∈ P1(x∗) contradict the optimality of (x∗1, z
∗
1) in (E,F ).
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5. Final Remark

In Aouani and Cornet (2009), we show that when portfolio sets are polyhedra, projecting on a

supplementary space to LF yields a reduced financial structure, that is, if π is a linear projection

satisfying ker π = LF then LFπ = {0}. A legitimate question is to ask whether this result holds with

“general” portfolio sets, and if not under which conditions − other than polyhedral portfolio sets

− does it hold? The following proposition provides an answer to this question.

Proposition 6. Let π be a linear projection of RJ such that ker π ⊂ LF , and consider the following

assertions.

(i) ker π = LF .

(i’) ker π = LF .

(ii) LFπ = {0}.

(ii’) LFπ = {0}.

(iii) ∀i ∈ I, AπZi ∩ −AπZi ∩ ker V = {0}.

Then the following hold:

(a) (i)⇒ (ii) ⇐⇒ (ii′)⇒ (iii).

(b) (i′) 6⇒ (ii).

(c) If the cones AZi ∩ ker V satisfy WPSI then (i) ⇐⇒ (i′) ⇐⇒ (ii) ⇐⇒ (ii′) ⇐⇒ (iii).

Proof. (a) [(i)⇒ (ii)]. This is Part (d) of Theorem 4.

[(ii) ⇐⇒ (ii′)]. This equivalence holds not only for Fπ but also for all financial structures F

satisfying Assumption F1. The implication (ii) ⇒ (ii′) is immediate since LF ⊂ LF . We show

(ii′) ⇒ (ii), that is, “LF = {0} ⇒ LF = {0}”. Assume LF = {0} and let ζ ∈ LF , then for every

integer n, nζ =
∑

i∈Izn
i for some zn

i ∈ Zi ∩ {V ≥ 0}, or equivalently ζ =
∑

i∈Izn
i /n, and we notice that

zn
i /n ∈ Zi ∩ {V ≥ 0} (since Zi is convex and contains 0). Consider now the set

K :=

(z1, . . . , zI) ∈
∏
i∈I

Zi : ∀i ∈ I,Vzi ≥ 0,
∑
i∈I

zi = ζ

 .
We claim that the set K is compact. Indeed, K is obviously closed and we only need to show that it

is bounded. To this end, we show that the asymptotic cone AK of K is equal to {0} (see Rockafellar
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(1997)). We have

AK :=

(ξ1, . . . , ξI) ∈
∏
i∈I

AZi : ∀i,Vξi ≥ 0,
∑
i∈I

ξi = 0

 .
Hence, if (ξ1, . . . , ξI) ∈ AK, then from Vξi ≥ 0 for every i ∈ I and

∑
i∈Iξi = 0 we deduce that

ξ1 = −
∑

i,1 ξi ∈
∑

i∈I(AZi ∩ {V ≥ 0}) ∩ −
∑

i∈I(AZi ∩ {V ≥ 0}) = LF = {0}. Therefore ξ1 = 0 and

similarly, ξi = 0 for every i ∈ I. That is AK = {0}. This ends the proof of the claim.

From the compactness of K one deduces that, without any loss of generality each sequence

(zn
i /n) converges to some ζi ∈ AZi ∩ {V ≥ 0}. Hence ζ =

∑
i∈Iζi ∈

∑
i∈IAZi ∩ {V ≥ 0}. Similarly

we prove that −ζ ∈
∑

i∈IAZi ∩ {V ≥ 0}. Therefore ζ = 0.

[(ii′)⇒ (iii)]. This is obvious since, for each i ∈ I, we have AπZi∩−AπZi∩ker V ⊂ LFπ = {0} .

(b) [(i′) 6⇒ (ii′)]. The following is an example of a financial structure where

ker π = LF 6⇒ LFπ = {0} .

Let V =

(
0 0 1

)
, I = 2, and

Z1 =
{
(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≥ 0, z3 ∈ R or z1 ≤ 0, z2 ≥ z2

1, z3 ∈ R
}
,

Z2 =
{
(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≤ 0, z3 ∈ R or z1 ≤ 0, z2 ≤ −z2

1, z3 ∈ R
}
.

It is easy to check that {V ≥ 0} = R × R × R+, AZ1 = R+ × R+ × R, AZ2 = R+ × R− × R. Thus

AZ1 ∩ {V ≥ 0} = R+ × R+ × R+, AZ2 ∩ {V ≥ 0} = R+ × R− × R+, and
∑

i∈I(AZi ∩ {V ≥ 0}) =

R+ × R × R+. So, if ker π = LF = {0} × R × {0}, then Imπ = (ker π)⊥ = R × {0} × R so that

AπZ1 = AπZ2 = R × {0} × R, and AπZ1 ∩ {V ≥ 0} = AπZ2 ∩ {V ≥ 0} = R × {0} × R+. Hence

LFπ = R × {0} × {0} , {0} .

(c) We need only show that, under WPSI, (i) is equivalent to (i′) and (iii) implies (i).

[(i) ⇐⇒ (i′)]. Follows from Theorem 9.1 page 73 in Rockafellar (1997).

[(iii) ⇒ (i) When the cones AZi ∩ {V ≥ 0} satisfy WPSI]. Since ker π ⊂ LF , we only need to

show the reverse inclusion. Let ζ ∈ LF . By Theorem 9.1 page 73 in Rockafellar (1997), if the

cones AZi ∩ {V ≥ 0} are weakly positively semi-independent, then LF =
∑

i∈I

(
(AZi ∩ {V ≥ 0}) ∩

−(AZi ∩ {V ≥ 0})
)
. Hence ζ =

∑
i∈Iζi with ζi ∈ AZi ∩ −AZi ∩ ker V for each i ∈ I. Thus

πζ =
∑

i∈Iπζi and for all i ∈ I,

πζi ∈ π(AZi ∩ −AZi ∩ ker V) ⊂ AπZi ∩ −AπZi ∩ ker V.
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Note that for the inclusion we used the following fact: (i) π(ker V) ⊂ ker V , and (ii) πAZi ⊂ AπZi.

Recall that, by assumption (iii), AπZi ∩−AπZi ∩ ker V = {0} for every i ∈ I. Hence πζi = 0 for all

i and consequently πζ = 0, that is, ζ ∈ ker π.

6. Appendix

6.1. Proof of Proposition 1

(i) By contradiction, assume that for some i ∈ I, there exists zi ∈ Zi such that W( p̄, q̄)zi >

W(p̄, q̄)z̄i, namely [W( p̄, q̄)zi](s) ≥ [W( p̄, q̄)z̄i](s), for every s ∈ S̄, with at least one strict inequal-

ity, say for s̄ ∈ S̄ . Then, since
∑

i∈I(x̄i − ei) = 0, from Assumption LNS, there exists x ∈
∏

i∈I Xi

such that xi(−s̄) = x̄i(−s̄) and xi ∈ Pi(x̄). Consider λ ∈ (0, 1) and define xλi := λxi + (1 − λ)x̄i.

Then, by Assumption LNS, xλi ∈ (xi, x̄i) ⊂ Pi(x̄). Now, we claim that for λ > 0 small enough,

(xλi , zi) ∈ Bi
F

( p̄, q̄), which contradicts the fact that
(
Pi(x̄) × Zi

)
∩ Bi

F
( p̄, q̄) = ∅ (since (p̄, q̄, x̄, z̄) is

an equilibrium). Indeed, since (x̄i, z̄i) ∈ Bi
F

( p̄, q̄), and xλi (−s̄) = x̄i(−s̄) we have: for all s , s̄,

p̄(s) · [xλi (s) − ei(s)] = p̄(s) · [x̄i(s) − ei(s)] ≤ [W(p̄, q̄)z̄i](s) ≤ [W( p̄, q̄)zi](s).

Now, for s = s̄, we have

p̄(s̄) · [x̄i(s̄) − ei(s̄)] ≤ [W( p̄, q̄)z̄i](s̄) < [W(p̄, q̄)zi](s̄).

Note that xλi → x̄i when λ → 0. Hence for λ > 0 small enough we have p̄(s̄) · [xλi (s̄) − ei(s̄)] <

[W( p̄, q̄)zi](s̄). Consequently, (xλi , zi) ∈ Bi
F

( p̄, q̄).

(ii) Suppose that for some i ∈ I, there exists a portfolio ζi ∈ AZi such that W( p̄, q̄)ζi > 0,

namely [W(p̄, q̄)ζi](s) ≥ 0, for every s ∈ S̄, with at least one strict inequality, say for s̄ ∈ S̄.

From Assumption LNS, there exists xi ∈ Pi(x̄) such that xi(−s̄) = x̄i(−s̄). For t > 0 large enough,

p̄ (xi − ei) ≤ W(p̄, q̄)(z̄i + t ζi). Since z̄i + t ζi ∈ Zi, we get (xi, z̄i + t ζi) ∈ Bi
F

(p̄, q̄) but since

xi ∈ Pi(x̄), this contradicts the optimality of (x̄i, z̄i) in Bi
F

(p̄, q̄).

6.2. Proof of Proposition 2

Note that assertions (a)-(e) are special cases of ( f ). Hence, we will prove only ( f ). First, we

prove the result when for every i ∈ I, Ki = {0}, i.e. when Zi is polyhedral for every i. Let

f : RJI → RS I × RJ, (z1, · · · , zI) 7→ (V(p)z1, · · · ,V(p)zI ,
∑
i∈I

zi).
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Then f is linear and one has GF (p) = f
(∏

i Zi

)
. Since

∏
i Zi is polyhedral, Theorem 19.3 page 174

in Rockafellar (1997) allows to conclude that GF (p) is polyhedral, hence closed.

Now, we show the result in the general case. Let (V(p)zn
1, · · · ,V(p)zn

I ,
∑

i∈Izn
i ) be a sequence

in the set GF (p) such that (V(p)zn
1, · · · ,V(p)zn

I ,
∑

i∈Izn
i ) −→

n→∞
(v1, · · · , vI , y), where (zn

i )n ⊂ Zi for

every i ∈ I. By assumption, for all i and for all n, zn
i = kn

i + βn
i where kn

i ∈ Ki and βn
i ∈

Pi. Since the Ki’s are compact, we can assume kn
i −→n→∞

ki ∈ Ki for all i ∈ I. The sequence(
(V(p)zn

i −V(p)kn
i )i,

∑
i∈Izn

i −
∑

i∈Ikn
i

)
n

is in the set GF ′(p), where F ′ =
(
V, (Pi)i

)
. Since, by the first

part of the proof, GF ′(p) is closed, one has(
(vi − V(p)ki)i, y −

∑
i∈I

ki

)
= lim

n

(
(V(p)zn

i − V(p)kn
i )i,

∑
i∈I

zn
i −

∑
i∈I

kn
i

)
∈ GF ′(p).

Hence, for all i there exists βi ∈ Pi such that V(p)βi = vi−V(p)ki and y−
∑

i∈Iki =
∑

i∈Iβi. Therefore(
(vi)i, y

)
=

(
(V(p)(ki + βi))i,

∑
i∈I(ki + βi)

)
with ki + βi ∈ Zi for each i. That is,

(
(vi)i, y

)
∈ GF (p).

6.3. Proof of Proposition 3

Note that assertions (g)-(k1) are special cases of (k2). Hence, we will prove only (k2). We

show that if the sets AZi ∩ ker V(p) are WPSI then the set GF (p) is closed. We have

GF (p) =

(V(p)z1, · · · ,V(p)zI ,
∑
i∈I

zi) : ∀i, zi ∈ Zi

 =
∑
i∈I

Xi

with

Xi = {(0, · · · , 0,V(p)zi, 0, · · · , 0, zi) : zi ∈ Zi} .

Then AXi = {(0, · · · , 0,V(p)ζi, 0, · · · , 0, ζi) : ζi ∈ AZi} . Now we show that the sets AXi (i ∈ I)

are weakly positively semi-independent. This will end the proof (see Theorem 9.1 page 73 in

Rockafellar (1997)). If
∑

i∈Iwi =
∑

i∈I(0, · · · , 0,V(p)ζi, 0, · · · , 0, ζi) = 0 with ζi ∈ AZi, then for

every i, V(p)ζi = 0, ζi ∈ AZi, and
∑

i∈Iζi = 0. Hence for each i, ζi ∈ AZi ∩ ker V(p) and
∑

i∈Iζi = 0.

By WPSI of the sets AZi ∩ ker V(p), we get ζi ∈ AZi ∩ −AZi for each i. Hence wi ∈ AXi ∩ −AXi

for each i ∈ I.

6.4. The example of Section 2.6.1

Clearly AZ2 = Z2 and it is easy to check that AZ1 =
{
(z1, z2, z3) ∈ R3 : z1 ≥ 0, z2 ≥ 0, z2

3 ≤ z1z2

}
and {V ≥ 0} = {0} ×R×R. Hence AZ1∩{V ≥ 0} = {0} ×R+× {0}, and AZ2∩{V ≥ 0} = {0} ×R−×
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{0}. Then the collection {AZi ∩ {V ≥ 0} : i ∈ 1, 2} is not WPSI. We show that F =
(
V, (Zi)i=1,2

)
satisfies the Closedness Assumption. Let (zn

i )n be a sequence in Zi (i = 1, 2), and assume that

(Vzn
1,Vzn

2, z
n
1 + zn

2) −→
n→∞

(v1, v2, z). We need to show that there exist (z1, z2) ∈ Z1 × Z2 such that

(v1, v2, z) = (Vz1,Vz2, z1 + z2). Write zn
1 = (αn

1, β
n
1, γ

n
1) and zn

2 = (αn
2, β

n
2, γ

n
2) with αn

1 ≥ 0, βn
1 ≥ 0, (γn

1)2 ≤ (αn
1 + 1)βn

1,

αn
2 ≥ 0, βn

2 ≤ 0, and γn
2 = 0.

Then Vzn
1 = (αn

1,−α
n
1), Vzn

2 = (αn
2,−α

n
2), and zn

1 +zn
2 = (αn

1 +αn
2, β

n
1 +βn

2, γ
n
1 +γn

2). Since the sequences

(Vzn
i )n (i = 1, 2) converge, we have αn

1 −→n→∞
α1 ≥ 0, αn

2 −→n→∞
α2 ≥ 0, and from the convergence of the

sequence (γn
1 + γn

2)n and the fact that γn
2 = 0 we conclude that γn

1 −→n→∞
γ1. Denote s = limn(βn

1 + βn
2).

Choose β1 ≥ max
(
s, (γ1)2/(α1 + 1)

)
, and let β2 = s − β1. Then one can easily check that z1 :=

(α1, β1, γ1) ∈ Z1, z2 := (α2, β2, 0) ∈ Z2, and v1 = Vz1, v2 = Vz2, z = z1 + z2.

6.5. Proof of Proposition 4

Assume G′
F

(p) is closed and let (wn)n be a sequence in GF (p) which converges to some w ∈

(RS )I × RJ i.e. wn = (V(p)zn
1, · · · ,V(p)zn

I ,
∑

i∈Izn
i ) −→

n→∞
w = (v1, · · · , vI , z), with zn

i ∈ Zi for each

i ∈ I and for every n ∈ N. Then wn ∈ G′
F

(p) for every n, and since G′
F

(p) is closed, we have

w ∈ G′
F

(p). That is z =
∑

i∈Izi with zi ∈ Zi and V(p)zi ≥ vi for every i ∈ I. But
∑

i∈Ivi =∑
i∈I limn V(p)zn

i = limn V(p)(
∑

i∈Izn
i ) = V(p)z = V(p)(

∑
i∈Izi) =

∑
i∈IV(p)zi, hence vi = V(p)zi for

each i ∈ I, and consequently, w = (V(p)z1, · · · ,V(p)zi,
∑

i∈Izi) ∈ GF (p).

Conversely, assume GF (p) closed and let (w′n)n be a sequence in G′
F

(p) which converges to

some w′ ∈ (RS )I × RJ i.e. w′n = (v′n1 , · · · , v
′n
I ,

∑
i∈Izn

i ) −→
n→∞

w′ = (v′1, · · · , v
′
I , z), with zn

i ∈ Zi and

V(p)zn
i ≥ v′ni for each i ∈ I and for every n ∈ N. For each i ∈ I, the sequence (v′ni )n converges

hence is bounded, therefore the sequence (V(p)zn
i )n is bounded below (since V(p)zn

i ≥ v′ni for ev-

ery n). Moreover the sequence (
∑

i∈IV(p)zn
i )n converges (towards V(p)z), hence for each i ∈ I,

the sequence (V(p)zn
i )n is bounded. We can therefore assume that for each i ∈ I, the sequence

(V(p)zn
i )n converges (use subsequences if necessary) to vi ∈ RS satisfying vi ≥ v′i . Now we con-

sider the sequence (wn)n ⊂ GF (p) where wn = (V(p)zn
1, · · · ,V(p)zn

I ,
∑

i∈Izn
i ). Then from above,

wn −→
n→∞

w = (v1, · · · , vI , z) ∈ GF (p) (since GF (p) is assumed to be closed). Hence z can be written

as z =
∑

i∈Izi with zi ∈ Zi and V(p)zi = vi for each i ∈ I. Recall that V(p)zi = vi ≥ v′i for each i ∈ I

and that w′ = w′ = (v′1, · · · , v
′
I , z) = (v′1, · · · , v

′
I ,
∑

i∈Izi), hence w′ ∈ G′
F

(p).
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6.6. Proof of Proposition 5

We show that for all p ∈ RL and for all v = (vi)i∈I ∈ (RS )I and w = (wi)i∈I ∈ (RS )I such that the

sets
∑

i∈I(Zi ∩ {V(p) ≥ vi}) and
∑

i∈I(Zi ∩ {V(p) ≥ wi}) are not empty, we have

A
(∑

i∈I(Zi ∩ {V(p) ≥ vi})
)
⊂ A

(∑
i∈I(Zi ∩ {V(p) ≥ wi})

)
.

The result of the proposition is obviously a direct consequence of the above inclusion.

Let ζ ∈ A
(∑

i∈I(Zi ∩ {V(p) ≥ vi})
)
, then ζ = limn→∞ λn

∑
i∈Izn

i for some zn
i ∈ Zi ∩ {V(p) ≥ vi},

λn > 0, and λn ↓ 0. We need to show that ζ ∈ A
(∑

i∈I(Zi ∩ {V(p) ≥ wi})
)
, that is, for zi ∈ Zi (i ∈ I)

such that V(p)zi ≥ wi, we have

ζ +
∑
i∈I

zi ∈
∑
i∈I

(Zi ∩ {V(p) ≥ wi}).

From above,

ζ +
∑
i∈I

zi = lim
n→∞

∑
i∈I

(
λnzn

i + (1 − λn)zi

)
.

Notice that, for n large enough, λn ∈ [0, 1]. Hence yn
i := λnzn

i + (1 − λn)zi belongs to Zi (because

zn
i and zi are in Zi, and Zi is convex). Furthermore V(p)yn

i ≥ λnvi + (1 − λn)wi. Therefore the

sequence (V(p)yn
i )n is bounded below. Moreover the sequence (

∑
i∈IV(p)yn

i )n converges (towards

V(p)(ζ +
∑

i∈Izi)), hence for each i ∈ I, the sequence (V(p)yn
i )n is bounded. We can henceforth

assume that for each i ∈ I, the sequence (V(p)yn
i )n converges (use subsequences if necessary) to

v′i ∈ RS satisfying v′i ≥ wi. Since(
V(p)yn

1, · · · ,V(p)yn
I ,

∑
i∈I

yn
i

)
∈ GF (p),

(
V(p)yn

1, · · · ,V(p)yn
I ,

∑
i∈Iyn

i

)
−→
n→∞

(v′1, · · · , v
′
I , ζ+

∑
i∈Izi), and the setGF (p) is closed (by the Closed-

ness Assumption), we conclude that there exists (yi)i∈I ∈
∏

i Zi such that (v′1, · · · , v
′
I , ζ +

∑
i∈Izi) =

(V(p)y1, · · · ,V(p)yI ,
∑

i∈Iyi). Hence, recalling that from above, v′i ≥ wi, we have ζ +
∑

i∈Izi =∑
i∈Iyi ∈

∑
i∈IZi ∩ {V(p) ≥ wi}.
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