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Abstract

We consider pure exchange economies with finitely many private goods involving the choice
of a public project. We discuss core-equivalence results in the general framework of non-
Euclidean representation of the collective goods. We define a contribution scheme to capture
the fraction of the total cost of providing the project that each blocking coalition is expected to
cover. We show that for each given contribution scheme defined over the wider class of Aubin
coalitions, the resulting core is equivalent to the corresponding linear cost share equilibria. We
also characterize linear cost share equilibria in terms of the veto power of the grand coalition. It
turns out that linear cost share equilibria are exactly those allocations that cannot be blocked
by the grand coalition with reference to auxiliary economies with the same space of agents
and modified initial endowments and cost functions. Unlike the Aubin-type equivalence and
results presented in [5], this characterization does not depend on a particular contribution
scheme.

JEL Class: D51, D60, H41
Key words: Public project, cost share equilibrium, core, non-dominated allocation,
grand coalition

1 Introduction

The main concern of this paper is to analyze the veto power of the grand coalition
(namely the coalition made of all agents) in market economies where the choice of
a public project is involved and, starting from this analysis, to provide new char-
acterizations of linear cost share equilibria. We consider exchange economies with
finitely many private goods and public projects just represented by an abstract set.
Budget sets on which agents take individual decisions are influenced by the public
good provision. To encompass different situations, throughout the paper the gen-
eral mathematical framework proposed by [20] is adopted to represent the public
sector of the economy. In [20] an economy with only one private commodity (to
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be interpreted as money), is considered and the choice of a public project takes
place over a set where no special structure is imposed. The absence (in contrast
with the classical Samuelsonian Euclidean scheme) of a linear structure on the set
of public projects allows in particular the treatment of those public goods on which
there is no reason to assume a commonly accepted order. This is the case of public
goods for which different individuals may have different perceptions and hence dif-
ferent rankings (see the discussion in [4], [5], [6], [9]). Moreover, if public projects
are interpreted as public environments, i.e. collections of variables common to all
the agents but determined outside the market mechanisms, this general framework
incorporates many different economic problems. This is the interpretation of the
Mas-Colell approach given by [13], [14], where non-market variables include legal
systems (such as the assignment of property rights), tax and benefits systems, but
also private goods provided by the public sector.

Finally, according to the original motivation proposed by Mas-Colell in [20]:“it is
not uncommon that a public decision problem be given in terms of a choice among
a few (say six or seven) projects”. If this is the case, no structure a priori makes
sense on the set of projects. We notice in particular that the absence of an ordered
structure on the set of public projects excludes the possibility of a Samuelsonian-like
monotonicity assumption on preferences with respect to the public goods provision.
Moreover, since the set of public projects has no special structure, it need not be
convex. Hence the discussion includes the case of non-convexity in public sector
decisions.

In [20] two main results are proved:
Pareto optimal allocations can be decentralized by means of valuation equilibria.

In a valuation equilibrium, the notion of valuation function provides non-linear indi-
vidual prices to have access to the public goods provision. The valuation functions
are interpreted as taxes or subsidies that agents have to pay or receive in order the
public projects to be realized. Under a valuation equilibrium each agent prefers his
consumption plan, defined as a bundle of private commodities and a public project,
to any other consumption plan affordable under the valuation function.

As a second main contribution, valuation equilibria with nonnegative valuation
functions (referred to as cost share equilibria) are showed to be equivalent to the
standard Foley core of the economy ([7]). This core equivalence result does not
contradict the traditional failure of core convergence results in public goods models1.
Indeed, it is worth to observe that the equivalence result in this setting depends
crucially on the fact that only one private good is present on the market.

Subsequent papers extend the model of [20] to allow multiple private goods (see
[4], [5], [9], [13], [14] and [3], [10], [2] for the general case of infinitely many private
commodities). In the corresponding notion of valuation equilibrium, it is assumed
that agents are able to maximize their utilities taking into account changes in the
price of private commodities deriving form changes in the public project. The as-
sumption that prices may depend on collective projects makes the approach different
from the one based on the notion of Lindahl equilibrium and it is motivated by the

1In [12] the supportability of the Foley core allocations as nonnegative valuation equilibria is proved for economies
with one private good and an arbitrary number of public goods assuming separate cost functions. The equivalence
of the core and cost share equilibria is shown in [26] focusing on the case of finite economies with one private good
and one public good.
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fact that, since public decisions may exhibit non-convexity, changes in the public
project may cause non-negligible changes in the prices of private commodities2. In
particular, each valuation equilibrium yields a core allocation but the (Foley) veto
mechanism is not enough to guarantee the equivalence between the core and the set
of cost share equilibria even for well-behaved large economies (see [4]). This confirms,
also in the case of non-Euclidean approaches, the generally accepted opinion that
the Foley core is too large and not useful to produce equivalence and convergence
results.

Well known counter-examples show the failure of the Edgeworth conjecture in
the public goods context under the veto mechanism adapted from private goods
economies. The assumption that the cost for the public good provision has a uni-
form distribution among the agents implies that the per-capita cost decreases for
an increasing number of agents (for example by replicas of the original economy ac-
cording to Debreu-Scarf procedure), making the small coalitions weaker. According
to the Foley veto mechanism, a blocking coalition is expected to produce the public
project by itself, covering the whole cost necessary for its provision. Since the block-
ing power of small coalitions becomes weaker as the number of agents increases, the
Foley core becomes larger and the core equivalence fails to be true. These negative
results lead to several alternative notions of competitive and core allocations.

In [5] a core equivalence theorem is proved assuming an atomless measure space
of agents, an unstructured set of abstract public projects, finitely many private
goods. The blocking mechanism is defined requiring that a contribution measure is
given to fix a cost sharing among coalitions: a contribution measure is a probability
measure that assigns to each coalition the fraction of the total cost of the project
that the coalition is expected to cover when blocking an allocation. Cost share
equilibria are assumed to be linear, that is a cost share function among traders
fix the contribution of each individual to the realization of each project: this cost
enters into the individual budget constraint defined under each alternative project.
It turns out that, assuming individual cost shares to be Radon-Nikodym densities of
contribution measures, the core based on some contribution measure is equivalent to
the set of linear cost share equilibria defined at the corresponding cost distribution
function. Moreover, [5] shows that, in the case of equal cost share equilibria (i.e.
assuming an equal cost share distribution among traders), the core equivalence holds
if and only if the contribution fixed for potentially blocking coalitions is proportional
to the size of coalitions (for a similar conclusion in the case of Lindahl equilibria see
[24]).

Our concern in this paper is twofold. We prove a core equivalence result for the
core of a finite economy with an abstract set of public projects and finitely many
private goods. To this aim, we consider the approach followed by [1] in the case
of finite exchange economies. The veto mechanism introduced in [1] is equivalent
to the classical Debreu-Scarf veto system applied to replica economies and leads
to a core that coincides with the competitive equilibria (see also [8]). It extends
the notion of coalition and the ordinary veto since it is allowed a participation of
the agents with a fraction of their endowments when forming a blocking coalition.

2In [14] the efficiency and decentralization of valuation equilibria is discussed treating prices of private com-
modities as fixed. In this case (remaining closer to the Lindahl equilibrium approach) agents compare alternatives
needing fewer informational requirements.
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Focusing on this approach, we are able to extend the idea of a contribution scheme
from ordinary coalitions to the wider class of Aubin coalitions. We obtain, as a
consequence, a core equivalence theorem for finite economies with an abstract set
of public projects. According to the new veto mechanism, the contribution to the
realization of the project for a blocking coalition is defined taking into account the
share of participation for each agent in the coalition itself. As for atomless economies,
the equivalence between the core and linear cost share equilibria for finite economies
depends on the given contribution measure and the corresponding cost distribution
function. The connection with the Debreu-Scarf approach is also provided. In a
second companion result the veto power of the grand coalition is exploited. Precisely,
it is proved that, given a cost share function and the corresponding contribution
measure, linear cost share equilibria are exactly those allocations that cannot be
blocked by a coalition in which each agent participates with a non zero fraction of
his initial endowment (see [15] for analogous results in the case of pure exchange
economies with asymmetric information). Our results are proved interpreting the
public goods economy with a finite number of agents as a continuum economy in
which only a finite number of different agents characteristics can be distinguished.

As a second main contribution, we provide a characterization of linear cost share
equilibria that again relies only on the grand coalition and is, in addiction, indepen-
dent of contribution schemes. We generalize to the case of economies with public
projects, the veto mechanism recently defined by [16]. To characterize competitive
equilibria, the idea proposed in [16] is to replace the veto power of infinitely many
coalitions with the veto power of just one coalition (namely the grand coalition) in
infinitely many economies. This is possible enlarging the redistribution of endow-
ments by perturbing the original initial endowments. The auxiliary economies in
the presence of public projects depend on each alternative public goods provision:
We prove that an allocation is a linear cost share equilibrium if and only if, for
each project, it is non-dominated by the grand coalition in the corresponding auxil-
iary economy. Since the contribution to the realization of each project for the grand
coalition is equal to one under any contribution scheme, we derive a characterization
of linear cost share equilibria independent of contribution measures and cost share
functions. The intuition underlying this result is that the Foley veto mechanism is
enough to obtain a complete characterization of linear cost share equilibria when
infinitely many economies are considered. In these economies the space of agents is
the same as in the original economy, the initial endowment and the cost functions
are modified.

The paper proceeds as follows. In Section 2 we present the model including the
notions of contribution measures and cost distribution functions. Section 3 contains
the main equilibrium notions and preliminary technical results. In Section 4 we
introduce Aubin coalitions for finite economies and extend the idea of contribution
measure to this class of coalitions. We obtain the equivalence between the linear
cost share equilibria of the finite economy and the Aubin core. Hence we analyze
the veto power of the grand coalition under the Aubin veto mechanism. Finally
in Sections 5 and 6 we provide the characterization of linear cost share equilibria
(of finite and large economies) as non-dominated allocations of a suitable family of
associated economies. Unlike the previous ones, this characterization relies on the
veto power in the Foley sense.
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2 The Economic Model

We present our model in a general measure-theoretical framework that will be spe-
cialized to the case of finite economies or continuum economies in the next sections.

An economy with (non-Samuelsonian) public goods is a tuple

E = {(I, Σ, µ), (Y, c), ω, (ut)t∈I}

where (I, Σ, µ) is a measure space; Y is an abstract set; c is a function from Y into
IRm

+ (the nonnegative orthant of IRm); ω is an integrable function from I into IRm
+ ;

for each t ∈ I , ut is a real valued function defined on IRm
+ × Y.

According to the standard interpretation, IRm
+ is the space of private commodities;

I is the set of economic agents; Σ is the Boolean algebra of allowable coalitions; µ

describes the size of coalitions; the elements of the set Y represent public projects;
the function c expresses the cost of any public project in terms of private goods; ωt

is the initial endowment density of agent t; ut is the utility function of t.
The economy E is finite if I = {1, 2, . . . , n} is a finite set, Σ = P(I) is the power

set of I and µ is the counting measure. The economy E is atomless when (I, Σ, µ) is
an atomless measure space (i.e., given any T ∈ Σ with µ(T ) > 0, then there exists
S ⊆ T such that µ(T ) > µ(S) > 0). In the last case, as a typical example, we shall
consider the unit interval [0, 1] with the Lebesgue measure.
Throughout the sequel we assume that:

(1) each consumer t has an initial endowment ωt > 0; the total initial endowment

ω ≡
∫

I
ω dµ satisfies the inequality ω � c(y)3, for each y ∈ Y. This condition

ensures that each private commodity is present on the market regardless to the
cost of the project that is going to be realized.

(2) For any public project y ∈ Y and for each t ∈ I , ut(·, y) is strictly monotone,
continuous, quasi concave and measurable in private goods in the standard
sense (see [18]).

An allocation for the economy E is a specification of the amount of private goods
assigned to each agent and of the public project chosen to be realized. An allocation
is then a pair (f, y), where f is an integrable function from I into IRm

+ and y ∈ Y is
a public project. It is said to be feasible if

∫

I
f dµ + c(y) ≤

∫

I
ω dµ

that means that the whole part of initial endowment not used for covering the cost
of the realized project is redistributed among the agents.

In order to define the competitive equilibria of our model, we need to introduce
cost distribution functions. As we shall see in the next section, they allow to describe

3we follow the standard notation according to which for two vectors x ≡ (x1, . . . xm) and z ≡ (z1, . . . zm) of IRm
+

x � z means that xi > zi, for each i = 1, . . . m.
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how much each economic agent must contribute to the realization of a public project,
given a system of prices for private commodities. A cost distribution is an integrable

function ϕ : I → IR+ that satisfies
∫

I
ϕdµ = 1. We denote by Φ the class of all cost

distributions for the economy E.
To model the veto mechanism underlying the core notion, we assume that po-

tentially blocking coalitions are responsible for a fixed share of the total cost of
the provision of the public goods. This cost is captured by means of contribution
measures. A contribution measure is a probability measure σ : Σ → [0, 1] which
is absolutely continuous with respect to µ, i.e. for every S ∈ Σ, µ(S) = 0 implies
that σ(S) = 0. We denote by Mµ the collection of all contribution measures of the
economy E.
There is a one-to-one relationship between the cost distribution functions and the
contribution measures. In fact, if ϕ ∈ Φ is a cost distribution function, then the
function σϕ given by

σϕ(S) =
∫

S
ϕdµ, for all S ∈ Σ

is a contribution measure. Conversely, starting from a contribution measure σ, the
function ϕσ given by

ϕσ(t) =
dσ

dµ
(t), for all t ∈ I

where
dσ

dµ
denotes the Radon-Nikodym derivative of σ with respect to µ, is a cost

distribution function.
From an Aubin-like perspective, we have the following notion of coalition (see [1],
[8], [22]):

Definition 2.1 Define the set

A = {γ : I → [0, 1] : γ is simple, measurable and µ({t ∈ I : γ(t) > 0}) > 0}.

We call any element γ of the set A an Aubin (or generalized) coalition and the set
{t ∈ I : γ(t) > 0}, denoted by suppγ, the support of the Aubin coalition γ.

The set A can be interpreted as a set of generalized coalitions in the following sense:
γ(t) represents the share of resources employed by agent t in the coalition γ. It is
clear that ordinary coalitions of Σ form a subset of A since each coalition S can be
identified with its characteristic function χS

4.
To model the veto mechanism on the wider class of Aubin coalitions, we extend each
contribution scheme σ from Σ to A as follows. Once observed that for each coalition

S ∈ Σ, we have the equality σ(S) =
∫

I
χSdσ, the contribution of the Aubin coalition

γ to the realization of a public project is defined by

σ̃(γ) =
∫

I
γ dσ.

4In the literature, Aubin coalitions are usually referred to as fuzzy coalitions in contrast with the term crisp

coalitions used for ordinary measurable subset of I. The term fuzzy set is used in relation to sets which are sharply
defined, so that there is ambiguity in declaring whether an element belongs to the set or to its complement. In the
generalized coalitions introduced here, it is intended that agents actually participate in a coalition with a fraction
of their initial endowments. Therefore, following [15]we prefer to call them Aubin coalitions.
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When S is a coalition of Σ, it is true that σ̃(γ) = σ(S), hence σ̃ can be seen as a
generalization of the measure σ5 . Let us denote by ϕ the individual cost distribution
corresponding to σ. Clearly, from the relation

σ̃(γ) =
∫

I
γϕdµ

it follows that the individual cost contribution of agent t when participating in the
Aubin coalition γ is equal to γ(t)ϕ(t), for each t ∈ suppγ. We explicitly remark
that in the case of a finite economy E, an Aubin coalition is a vector of real numbers
γ ≡ (γ1, . . . , γn) of the interval [0, 1] not all equal to zero and for each contribution
measure σ defined over Σ = P(I), the extension of σ to A, when evaluated on γ, is

given by σ̃(γ) =
n∑

i=1

γiσ({i}).

3 Equilibrium Notions

In this Section we introduce and discuss the main equilibrium notions that will be
analyzed throughout the paper and state the basic relationships among them. We
start introducing the notion of dominated allocations. We refer to [15] and [16] for
the analogue in the case of pure exchange economies.

Definition 3.1 Let z ∈ Y be a public project. An allocation (f, y) (feasible or not)
is z-dominated if there exists a feasible allocation (g, z) such that ut(gt, z) > ut(ft, y),
for almost all t ∈ I.

The allocation (f, y) is a non-dominated allocation if it is not z-dominated, for each
z ∈ Y. A feasible and non-dominated allocation (f, y) is said to be Pareto optimal.

Let ∆ =

{
p ∈ IRm

+ |
m∑

i=1

pi = 1

}
be the (m− 1)-dimensional price simplex. In the

following, the notion of cost share equilibrium introduced by [20] for a model with
one private good is adapted to the case of finitely many private goods (compare [4],
[5]).

Definition 3.2 A feasible allocation (f, y) is a linear cost share equilibrium if there
exists a price system p : Y → ∆ and a cost distribution function ϕ such that, for
almost all t ∈ I, (f(t), y) maximizes the utility ut on the budget set

{
(h, z) ∈ IRm

+ ×Y | p(z) · h + ϕ(t)p(z) · c(z) ≤ p(z) · ω(t)
}

.

Let ϕ ∈ Φ be a cost distribution function. The set of linear cost share equilibria
whose corresponding cost distribution function is equal to ϕ will be denoted by
LCEϕ(E). If LCE(E) is the set of linear cost share equilibria, then

LCE(E) =
⋃

ϕ∈Φ

LCEϕ(E).

5Interpreting σ as a probability measure on the space (I, Σ), σ̃(γ) can be interpreted, according to [27], as the
probability measure of the fuzzy event γ and it coincides with the expectation of the fuzzy event taken with respect
to the initial probability measure σ.
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Notice that the distribution among the agents of the public goods provision costs
is not necessarily a constant function. This specification, i.e. the case in which
ϕ(t) = 1 for almost all t ∈ I , leads to the so called equal cost share equilibria.

The utility maximization condition contained in the definition of linear cost share
equilibria is the counterpart of similar conditions in usual competitive equilibrium
concepts. However, unlike the notion of Lindahl equilibrium commonly adopted in
a public goods framework, it is important to point out that the price system p for
private commodities defining the budget set of each trader, depends on the set of
public projects. As a typical request of the model, although only one project will
be realized in equilibrium (the project y), the prices for each possible realization
of different projects have to be known. The price system p : Y → ∆ is usually
interpreted as incorporating each possible variation in the private goods sector of the
economy due to variations in the public goods choices. The substantial difference
with respect to models with Samuelsonian public goods, is due to the fact that
preferences are not monotone in the projects since the set Y is not necessarily
Euclidean. It is possible to show that, even assuming the linearity of the set Y,
it might be impossible to decentralize optimal allocations without a price system
contingent on public projects (see [6]).

The second main task in which the notion of linear cost share equilibrium dif-
fers from the usual competitive one is of course the presence of cost distribution
functions. The term ϕ(t)p(z) · c(z) contained in the budget constraint, represents
the analogue of individual personalized prices for public goods typical of Lindahl
equilibrium notions. They are usually interpreted as individual prices that agents
have to pay to have access to the public goods consumption. Notice however that,
differently by Lindahl prices, they depend on prices for private commodities.

The concept of cost share equilibria defined in [20] for economies with only one
private commodity, relies on a more general system of taxes called valuation func-
tions. They fix the individual price that agents pay or receive to have access to the
public goods provision. In general, it is possible to show that the set of linear cost
share equilibria is a proper subset of the class of cost share equilibria. However, we
note that, if there is a unique provision level of public goods, i.e. |Y| = 1, then each
cost share equilibrium is a linear cost share equilibrium.

The issue of existence of linear cost share equilibria is discussed in [5] and [9]. It
comes out that in our treatment of the public goods sector, differently from the case
of Lindahl equilibria, one has not to expect a very general existence theorem. How-
ever, the following existence result ensures that the competitive notion introduced
in Definition 3.2 is not vacuous.

Theorem 3.3 [5, Theorem 1] There exists an atomless economy E with public goods
with preferences represented by strictly monotone and quasi-concave utility functions
for which the set LCE(E) of linear cost share equilibria is not empty.

As an immediate optimality property of linear cost share equilibria, we have the
following.

Proposition 3.4 If (f, y) is a linear cost share equilibrium in E, then it is not
z-dominated for each z ∈ Y. In particular, (f, y) is a Pareto optimal allocation.
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proof: Assume by contradiction that (f, y) is z-dominated for a project z ∈ Y.
Then there would exists a feasible allocation (g, z) such that ut(g(t), z) > ut(f(t), y)
for almost all t ∈ I . Let p and ϕ be, respectively, the price system and the cost
distribution function associated to (f, y). Then for almost all t ∈ I , it results

p(z) · g(t) + ϕ(t) p(z) · c(z) > p(z) · ω(t)

hence
p(z) ·

∫

I
g dµ + p(z) · c(z)

∫

I
ϕdµ > p(z) ·

∫

I
ω dµ

and then
p(z) ·

∫

I
g dµ + p(z) · c(z) > p(z) ·

∫

I
ω dµ,

that contradicts the feasibility of (g, z). 2

We introduce in the following the core notion that is most compatible with that
of cost sharing. To this aim, we are going to assume, within the framework of
contribution measures, a given contribution scheme. According to it, potentially
blocking coalitions are not required to cover the whole cost of the new project when
dissenting from a given allocation.

Definition 3.5 Given a contribution measure σ, we say that a coalition S ∈ Σ with
µ(S) > 0, σ-blocks an allocation (f, y) if there exist a public good z ∈ Y and an
integrable assignment of private goods g : S → IRm

+ such that
∫

S
gdµ + σ(S)c(z) ≤

∫

S
ωdµ

and
ut(g(t), z) > ut(f(t), y), for almost all t ∈ S.

The veto mechanism just defined requires that each member of the blocking coalition
is better off under the new assignment and the different project. Moreover, the
coalition itself is able to cover the share of the cost of the new public project for
which it is responsible, according to the given scheme.

The σ-core (or the σ-budget core) of the economy E, denoted by Cσ(E), is the
set of feasible allocations that cannot be σ-blocked by any coalition. When the
contribution measure σ is equal to the underlying measure µ, the corresponding
core, Cµ(E), is called the proportional core.

Notice that the notion of core that Foley ([7]) originally proposed for economies
with public goods, requires that every blocking coalition incurs the entire cost of
producing the quantities of the public goods it needs in order to block. This as-
sumption cannot be captured by a contribution measure, but by the contribution
function, called maximal contribution scheme, which assigns to each non-null coali-
tion a share equal to 1. Let C(E) be the Foley core of the economy E. Clearly, for
any contribution measure σ, we have the inclusion Cσ(E) ⊆ C(E), since blocking is
hardest under the Foley contribution scheme.

Let us extend now the veto mechanism depending on contribution measures, to
the more general case of Aubin coalitions.
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Definition 3.6 Given a contribution measure σ, we say that an Aubin coalition
γ ∈ A σ-blocks an allocation (f, y) if there exist a public good z ∈ Y and an integrable
assignment g : I → IRm

+ of private goods such that
∫

I
γgdµ + σ̃(γ)c(z) ≤

∫

I
γωdµ

and
ut(g(t), z) > ut(f(t), y), for almost all t ∈ suppγ.

A feasible allocation (f, y) is in the Aubin σ-core if it cannot be σ-blocked by an
Aubin coalition in the previous sense. The Aubin σ-core of E will be denoted by
CA

σ (E). Since ordinary coalitions are a particular case of the Aubin coalitions, then
the inclusion CA

σ (E) ⊆ Cσ(E) is obvious. In the Aubin blocking mechanism, the
share of the cost of the project that an agent of the dissenting coalition has to cover
according to σ, is further weighted by the share of participation in the coalition
itself.

Concerning the relation between budget cores and linear cost share equilibria,
the first result studies the inclusion of the set LCEϕ(E) in a well specified budget
core.

Proposition 3.7 Let (f, y) be a linear cost share equilibrium in E with cost distri-
bution function ϕ and let σϕ be the corresponding contribution measure. Then (f, y)
belongs to the Aubin σϕ-core of E CA

σϕ
(E) and, consequently, to the σϕ-core Cσϕ(E).

proof: Assume, by contradiction, that (f, y) does not belong to the Aubin σϕ-
core. Then there exist a coalition γ ∈ A, a public project z ∈ Y and an assignment
g : I → IRm

+ of private commodities such that
∫

I
γgdµ + σϕ(γ)c(z) ≤

∫

I
γωdµ

and
ut(g(t), z) > ut(f(t), y), for almost all t ∈ suppγ.

Then, denoted by p the system of prices associated to (f, y), by definition of linear
cost share equilibrium it follows that, for almost all t ∈ S,

p(z) · g(t) + ϕ(t) p(z) · c(z) > p(z) · ω(t).

Consequently,

p(z) · γ(t)g(t) + γ(t)ϕ(t) p(z) · c(z) > p(z) · γ(t)ω(t).

Since σ̃ϕ(γ) =
∫

I
γϕdµ, we have that

p(z) ·
∫

I
γgdµ + p(z) · σ̃ϕ(γ)c(z) > p(z) ·

∫

I
γωdµ

and a contradiction, given the feasibility of (g, z) on the coalition γ under the con-
tribution measure σϕ. 2
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In particular, Theorem 3.3 and Proposition 3.7 ensure that the notions of Aubin
σ-core and σ-core are not vacuous.

The Foley core is considered to be the core of the economy in [20]. In this paper
it is proved that, assuming only one private commodity, this core is equivalent
to the set of cost share equilibria (see also [21] and [26] for similar equivalence
results with traditional public goods). In the case of finite economies with finitely
many private commodities, the failure of this equivalence is proved in [4]. The
non-equivalence between the Foley core and the set of cost share equilibria in large
atomless economies is confirmed in [5, Theorem 5]. When the economy E is atomless,
the equivalence between well specified budget cores and well chosen linear cost share
equilibria, namely the reverse of the inclusion LCEϕ(E) ⊆ Cσϕ(E) following from
Proposition 3.7, is stated in the next result.

Theorem 3.8 [4, Theorem 4] Let E be an atomless economy with public goods. Let

σ ∈ Mµ be a contribution measure and let
dσ

dµ
∈ Φ be the corresponding Radon-

Nikodym derivative. Then Cσ(E) = LCE dσ
dµ

(E).

The previous equivalence result explicitly depends on the contribution measure and
the corresponding cost distribution function. We notice that it contains as a particu-
lar case the equivalence between the equal cost share equilibria and the proportional
core. Moreover, it implies also that, in the case of atomless economies, for each con-
tribution measure σ, the Aubin σ-core coincides with the set LCE dσ

dµ
(E). Hence

the Aubin cooperation will provide useful information concerning linear cost share
equilibria only in the case of finite economies, namely the situation in which the
σ-core is too big.

We close this Section with some technical results that will be useful in the rest
of the paper. The first Lemma guarantees, for each Pareto optimal allocation (f, y),
the existence, under the project z different from y, of special feasible allocations:
They will play, under the project z, the role of f , allowing us to reduce some of the
arguments in our proofs to the pure exchange case.

In order to state the Lemma, we have to introduce the following essentiality con-
ditions:

First essentiality condition: For any feasible allocation (f, y), for all z in Y and
for every agent t ∈ I there exists a bundle g of private commodities such that
ut(g, z) ≥ ut(f(t), y).

Second essentiality condition: For any agent t ∈ I , for all y, z ∈ Y, for all f ∈ IRm
+ ,

the inequality ut(0, z) ≤ ut(f, y) holds.

The first essentiality condition ensures that any variation in the public goods provi-
sion can be compensated by a suitable quantity of private goods. They are analogous
to the essentiality conditions stated in [4]6.

6In [13] a condition analogous to the first essentiality condition is introduced restricting the attention to suitable
subsets of Y. Under this approach, one excludes a priori those projects which are so bad for some agent t that no
choice of a commodity bundle compensates the agents for deviating from the bundle (ft, y).
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The following regularity condition refers to the integrability property of preferences
(compare a similar conditions introduced in [5]):

Integrable utilities: For any allocation (f, y) and for all z in Y there exists a distri-
bution of private commodities g : I → IRm

+ such that (g, z) is feasible and for almost
every agent t ∈ I , if for some vector h ut(h, z) > ut(f(t), y) then it is also true that
ut(g(t), z) ≥ ut(f(t), y).

Lemma 3.9 Assume that the utility functions satisfy the essentiality conditions and
that are integrable. If (f, y) is a Pareto optimal allocation of the economy E, then
there exist, for any public project z ∈ Y an integrable function γz and a system of
prices p(z) such that: (γz, z) is a feasible allocation; ut(γz(t), z) ≥ ut(f(t), y) for
almost all t ∈ I; ut(g, z) > ut(f(t), y) ⇒ p(z) · g > p(z) · γz(t), for almost all t ∈ I.

proof: See the Appendix 7.1. 2

Notice that in the case of a single project, the content of Lemma 3.9 exactly gives
the second welfare Theorem.
The following Proposition deserves interest in itself. It extends to the case of ex-
change economies with an abstract set of public projects the results of [23] and [?].
In the atomless framework, it is enough to consider the veto power of coalitions of
a given measure to obtain the σ-core. In particular, when combined with Theo-
rem 3.8, it implies that non-linear cost share equilibria coincide exactly with those
allocations that can be σ-blocked by coalitions of arbitrarily small or big measure.

Proposition 3.10 Assume that the utility functions satisfy the essentiality condi-
tions and that are integrable. Let (f, y) be a Pareto optimal allocation of the atomless
economy E not belonging to the σ-core of E. Then, for any ε, with 0 < ε < 1, there
exists a coalition T with µ(T ) = ε, and an allocation (g, z) that σ-blocks (f, y) on T .

proof: See the Appendix 7.2. 2

4 Equivalence results for finite economies

The aim of this section is to prove a characterization of linear cost share equilibria in
terms of σ-core allocations in the case of economies with a finite number of agents.
We shall assume that the set of agents is I = {1, . . . n}, µ is the counting measure
over the algebra of coalitions Σ = P(I).

As it is well known, a finite set of coalitions is not enough to obtain equivalence
theorems in the finite setting. Indeed, in the case of economies with private com-
modities, the characterization of competitive allocations is only asymptotic and it
is proved, for example, by replicating the original economy. Under a different point
of view, as in the approach adopted by [1], the choice of a modified coalition no-
tion implies that the core shrinks to the set of competitive equilibria. According
to this, one should not expect, even for finite economies with public projects, an
equivalence result without increasing the number of potentially blocking coalitions.

12



Nevertheless, it is well known that the classical convergence results for economies
with private goods do not extend to the public goods context under the Foley con-
cept of blocking. This discussion says that the approach to the core equivalence in
our setting should require both an increasing number of coalitions and a modifica-
tion of the veto mechanism. For this reason, the analysis followed in this Section
extends the idea of contribution measures from ordinary coalitions of P(I) to more
general Aubin coalitions. The corresponding equivalence theorem will be also stated
in terms of replica economies.
In order to prove the converse of Proposition 3.7 in the case of finite economies, we
start considering a continuum economy EC with n different types of agents canon-
ically associated to E. The construction follows the procedure that is standard in
the case of economies with private goods (see for example [16]), but it takes into
account also the relationship between cost distribution functions and contribution
measures.
The space of agents is represented by the real interval I = [0, 1] with the Lebesgue

measure µ. We write I =
n⋃

i=1

Ii, where Ii =
[
i − 1

n
,
i

n

[
if i 6= n and In =

]
n − 1

n
, 1

]
.

Each consumer t ∈ Ii is characterized by the consumption set IRm
+ , the utility

function ut = ui and the initial endowment ω(t) = ωi. We will refer to Ii as the set
of agents of type i in the atomless economy EC . Moreover the set Y represents the

set of public projects and the function ĉ : Y → IRm
+ defined as ĉ(y) =

c(y)

n
, is the

cost function.

Observe that an allocation (x1, . . . , xn, y) in E can be interpreted as an allocation
(f, y) in EC , where f is the function defined as f(t) = xi, if t ∈ Ii. Reciprocally, an
allocation (f, y) in EC can be interpreted as an allocation (x1, . . . , xn, y) in E, with

xi =
1

µ(Ii)

∫

Ii

fdµ.

We notice also that

If ϕ is a cost distribution function for E, then ϕ̂ : I → IR+ defined as ϕ̂(t) =
nϕ(i), if t ∈ Ii is a cost distribution function for EC .

Reciprocally, if ϕ̂ is a cost distribution function for EC , then ϕ : I → IR+ defined

as ϕ(i) =
∫

Ii

ϕ̂dµ is a cost distribution function for E.

If σ is a contribution measure for E, then σ̂ : Σ → [0, 1] defined as

σ̂(S) =
n∑

i=1

σ({i})
µ(S ∩ Ii)

µ(Ii)

for each S ∈ Σ, is a contribution measure for EC .

Reciprocally, if σ̂ is a contribution measure for EC , then σ : I → [0, 1] defined
as σ(S) =

∑

i∈S

σ̂(Ii), for each S ∈ P(I), is a contribution measure for E.

Proposition 4.1 If the allocation (x1, . . . , xn, y) is in the Aubin σ-core, then it is
a linear cost share equilibrium with cost distribution function ϕσ.
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proof: First we prove that the associated allocation (f, y) defined by f(t) = xi,
for all t ∈ Ii is in the σ̂-core of the continuum economy EC , where the contribution
measure σ̂ is defined by

σ̂(E) =
n∑

i=1

σ({i})
µ(E ∩ Ii)

µ(Ii)
.

Assume that (f, y) is not in the σ̂-core. Then there exist a coalition S ∈ Σ with
µ(S) > 0, a public good z ∈ Y, and an integrable assignment of private commodities
g : S → IRm

+ such that ∫

S
gdµ + σ̂(S)ĉ(z) ≤

∫

S
ωdµ

and for almost all t ∈ S,
ut(g(t), z) > ut(f(t), y).

The second inequality implies that, for almost all t ∈ S ∩ Ii,

ui(g(t), z) > ui(xi, y).

Set γi = µ(S ∩ Ii) and, for those i such that γi > 0, define gi =
1

γi

∫

S∩Ii

gdµ. Then

we have

n∑

i=1

γigi =
∫

S
gdµ ≤

∫

S
ωdµ − σ̂(S)ĉ(z) =

n∑

i=1

∫

S∩Ii

ωdµ −
n∑

i=1

σ({i})
µ(S ∩ Ii)

µ(Ii)

c(z)

n
=

=
n∑

i=1

γiωi − σ̃(γ)c(z)

and, by Jensen’s integral inequality (see [19]), for all i such that γi > 0,

ui(gi, z) > ui(xi, y).

Hence a contradiction that proves our claim.
By Theorem 3.8, (f, y) is a linear cost share equilibrium with respect to the indi-
vidual cost function ϕ̂ associated to σ̂ and defined by ϕ̂(t) = nσ({i}), for almost all
t ∈ Ii.

Let p : Y → ∆ be the price system associated to (f, y).
We claim that (x1, . . . , xn, y) is a linear cost share equilibrium with respect to

the contribution function ϕ and the price system p.
For each i ∈ {1, . . . , n}, z ∈ Y and t ∈ Ii, we have that

p(z) · xi + ϕi p(z) · c(z) = p(z) · f(t) + ϕ̂(t) p(z) · ĉ(z) ≤ p(z) · ω(t),

the inequality being an equality when z = y. Assume now that for i ∈ {1, . . . , n},
z ∈ Y and g ∈ IRm

+ it is
ui(g, z) > ui(xi, y).

Since (f, y) is a linear cost share equilibrium, we have that, for almost all t ∈ Ii,

p(z) · g + ϕ̂(t) p(z) · ĉ(z) > p(z) · ω(t)
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hence
p(z) · g + ϕi p(z) · c(z) > p(z) · ωi

that proves our claim. 2

From Propositions 3.7 and 4.1, it follows the analogous of Theorem 3.8 in the case
of finite economies with an abstract set of public projects.

Theorem 4.2 Let E be a finite economy. Let σ ∈ Mµ be a contribution measure and
let ϕσ ∈ Φ be the corresponding cost distribution function. Then CA

σ (E) = LCEϕσ(E).

The equivalence expressed by Theorem 4.2 can be interpreted in terms of classical
convergence results according to a replica process.

This is possible defining for each positive integer r the r-fold replica of the econ-
omy E as the economy Er with the following characteristics:

• the economy Er has the same commodity-price duality of E; the same set of
public projects Y; the cost function defined by cr(z) = rc(z);

• for each i = 1, . . . , n, there are r agents of type i, each one indexed by (i, j)
with j = 1, . . . , r, having the same initial endowment ωi,j = ωi and the same
utility functions ui,j(·, z) = ui(·, z), for any public project z ∈ Y.

Definition 4.3 Let σ ∈ Mµ be a contribution measure of the economy E. Define

a contribution measure of the r-fold replica economy Er by σ({i, j}) = σ({i})
r

, for
each j = 1, . . . r. A feasible allocation (x1, . . . , xn, y) is said to be a σ-Edgeworth
equilibrium of E whenever the corresponding equal treatment allocation

(x1,1, . . . , x1,r, . . . , xn,1, . . . , xn,r, y)

with xi,h = xi,k for any h, k = 1, . . . , r, for any i = 1, . . . , n, belongs to the σ-core of
Er, for each r.

In the following we interpret Aubin σ-core allocations of the finite economy as σ-
Edgeworth equilibria. We state the result by making an additional assumption:
This condition implies that under the fixed contribution scheme, each agent owns
a positive initial amount of private commodities after paying for the public goods
provision.

Proposition 4.4 Assume that for a contribution measure σ ∈ Mµ it is true that
(ωi − σ({i})c(z) � 0, for each agent i. Then the σ-Aubin core of the economy E
coincides with the set of the σ-Edgeworth equilibria.

proof: Let the allocation (x1, . . . , xn, y) be in the σ-Aubin core and assume that
it is not a σ-Edgeworth equilibrium. So, there exist an r-replica Er, a coalition T of
Er , and an allocation ((gi,j)(i,j)∈T , z) such that ui,j(gi,j , z) = ui(gi,j, z) > ui(xi, y) for
all (i, j) ∈ T and

∑

(i,j)∈T

gi,j +
∑

(i,j)∈T

σ({i, j})cr(z) ≤
∑

(i,j)∈T

ωi,j.

15



Let us denote by li the number of agents of type i belonging to the coalition T , by A

the set A = {i : li 6= 0} and, for each i ∈ A, by gi the convex combination
∑

j

1

li
gi,j.

From the previous inequality we obtain

∑

i∈A

ligi +
∑

i∈A

li
σ({i})

r
rc(z) ≤

∑

i∈A

liωi

so, considering the Aubin coalition γ defined by γi = li for each i ∈ A, by convexity
of the utility functions ui(·, z), we get a contradiction.

Conversely, let (x1, . . . , xn, y) be a σ-Edgeworth equilibrium, and assume that
there exists an Aubin coalition (γi)

n
i=1 and an allocation (g1, . . . , gn, z) such that

ui(gi, z) > ui(xi, y) for all i ∈ suppγ and
∑

i∈suppγ

γigi + σ̃(γ)c(z) ≤
∑

i∈suppγ

γiωi.

Let ε ∈ (0, 1) be such that ui(εgi, z) > ui(xi, y), for each i = 1, . . . n. We can rewrite
the last inequality in the form

∑

i∈suppγ

γi

ε
[εgi + (1 − ε)(ωi − σ({i})c(z))] +

∑

i∈suppγ

γi

ε
σ({i})c(z) ≤

∑

i∈suppγ

γi

ε
ωi.

By monotonicity assumption, we have that ui(εgi + (1 − ε)(ωi − σ({i})c(z)), z) >

ui(xi, y), where the vectors εgi +(1− ε)(ωi −σ({i})c(z)) are strictly positive. Hence
we can assume, without loss of generality, that gi � 0 for each i and therefore, again
by continuity, that

∑

i∈suppγ

γigi +
∑

i∈suppγ

γiσ({i})c(z) �
∑

i∈suppγ

γiωi.

This last inequality ensures that the Aubin coalition γ can be replaced by a rational
valued coalition γ

′

in such a way that the inequality still holds.
Let r be an integer such that li = rγ

′

i is integer, for every i ∈ suppγ. Define
the coalition S in the r-fold replica Er of E as the coalition containing agents (i, j)
j = 1, . . . li, and for i ∈ suppγ. Define gi,j = gi, for j = 1, . . . li, for each i ∈ suppγ.
It follows from the previous inequality that

∑

i∈suppγ

ligi,j +
∑

i∈suppγ

liσ({i, j})cr(z) �
∑

i∈suppγ

liωi,j

contradicting the fact that the allocation (x1, . . . , xn, y) belongs to the σ-core of the
economy Er. 2

The previous result combined with the Aubin core equivalence stated in Theorem 4.2
implies that linear cost share equilibria are exactly Edgeworth equilibria of replica
economies.

As a final result of this Section, we make clear the power of the Aubin veto for
finite economies. We show that, under the Aubin blocking mechanism, it is enough
to consider the Aubin coalitions with full support in order to characterize Aubin
σ-core allocations (and, consequently, linear cost share equilibria)7.

7An interesting application of this equivalence result provides a characterization of Linear cost share equilibria
as strong Nash equilibria of a suitable associated two player game (see [17], [11]).
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Theorem 4.5 Assume that the utility functions satisfy the essentiality conditions
and that are integrable. Then the Aubin σ-core of E coincides with the set of feasible
allocations that cannot be σ-blocked by an Aubin coalition with full support.

proof: The proof of one inclusion is obvious. To show the non trivial one, let us
consider a feasible allocation (x1, . . . , xn, y) that cannot be σ-blocked by an Aubin
coalition with full support and assume that it does not belong to the Aubin σ-core
of E. Notice in particular that the allocation (x1, . . . , xn, y) is Pareto optimal. Then
it is easy to show that the allocation (f, y) defined by f(t) = xi on the subinterval
Ii of [0, 1] is Pareto optimal and it does not belong to the σ-core of the associated
continuum economy EC. So there exist an allocation (g, z) and a coalition S with
µ(S) > 0 such that

ut(g(t), z) > ut(f(t), y), for almost all t ∈ S

and ∫

S
gdµ + σ̂(S)ĉ(z) ≤

∫

S
ωdµ.

From Proposition 3.10 it follows that the allocation (f, y) can be blocked on a
coalition T with 1 > µ(T ) > n−1

n
, so there exists an allocation (h, z) such that

ut(h(t), z) > ut(f(t), y), for almost all t ∈ T

and ∫

T
hdµ + σ̂(T )ĉ(z) ≤

∫

T
ωdµ

Note that βi = µ(T ∩ Ii) > 0 for all i and define hi =
1

βi

∫

T∩Ii

hdµ.

We have
ui(hi, z) > ui(fi, y), for all i = 1, . . . , n

and
n∑

i=1

βi

1

βi

∫

T∩Ii

hdµ +
n∑

i=1

σ({i})βic(z) ≤
n∑

i=1

∫

T∩Ii

ωidµ

that is
n∑

i=1

βihi +
n∑

i=1

σ({i})βic(z) ≤
n∑

i=1

βiωi

Since each βi 6= 0, the allocation (x1, . . . , xn, y) is σ-Aubin blocked by the grand
coalition. 2

Remark 4.6 We notice that the proof of Theorem 4.5 works in the same way if in
the second part we choose a coalition T such that 1 > µ(T ) > n−δ

n
, with δ < 1. In

this case, the coefficient βi can be replaced by nβi and it results that nβi > 1− δ. If
we choose δ arbitrarily close to zero, then nβi is close to one. Hence the participation
of each agent in the grand coalition in the statement of Theorem 4.5 can be actually
required to be close to the complete participation.
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5 Non-dominated allocations in continuum economies

It is the aim of this Section to extend the veto mechanism introduced by [16] to
the case of exchange economies with an abstract set of public projects. We shall
require that an allocation cannot be blocked in infinitely many economies in which
the set of agents does not change, but the initial endowments and the cost functions
are suitably modified. In these economies, we shall focus on the veto power of only
one coalition, the grand coalition. The interest of this approach in the presence of
public projects relies on the fact that the contribution of the grand coalition to the
realization of each project is equal to one under any contribution measure.

Given a coalition S, a feasible allocation (g, z) and a real number α ∈ [0, 1], let
us denote by E(S, z, α) the continuum economy which coincides with E except for
the initial endowment allocation and for the cost function, defined respectively by

ω(S, z, α)(t) =

{
ω(t) if t ∈ I \ S

(1 − α)ω(t) + αg(t) if t ∈ S

and
c(S, α) = (1 − αµ(S))c.

The continuum perturbed economy E(S, z, α) represents a path from the initial
allocation ω to g. Clearly, E(S, z, α) coincides with E, when α = 0. Note that if the
size of the coalition S is either arbitrarily small or arbitrarily big, then the amount
of private goods that can be consumed after paying for the realization of the project
z, is the same in the economies E and E(S, z, α). In fact we have
∫

I
ω(S, z, α)dµ−c(S, α)(z) =

∫

I\S
ωdµ+

∫

S
(1−α)ωdµ+

∫

S
αgdµ−(1−αµ(S))c(z) =

=
∫

I
ωdµ + α

∫

S
(g − ω)dµ − (1 − αµ(S))c(z)

and then in both cases, by feasibility of (g, z), the difference
∫

I
ω(S, z, α)dµ − c(S, α)(z)

is very close to
∫

I
ωdµ − c(z).

Let (f, y) be a Pareto optimal allocation of the economy E. For each z ∈ Y define
the correspondence

t ∈ I → F (t, z) ⊆ IRm
+

as follows
F (t, z) =

{
g ∈ IRm

+ ut(g, z) > ut(f(t), y)
}

.

Let us denote by F (z) the integral of the correspondence F (t, z) + c(z) − ω, i.e.

F (z) =
∫

I
F (t, z)dµ + c(z) − ω.

The following assumption requires a smoothness property of preferences under each
project z ∈ Y.
Aggregate smoothness condition: For each Pareto optimal allocation (f, y) and for
each public project z ∈ Y, there exists at most one price p(z) supporting the set
F (z) at the point 0, i.e. at most one price p(z) s.t.

p(z) · F (z) ≥ 0.
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Clearly the uniqueness of p(z) is referred to its direction.

Proposition 5.1 Assume that the utility functions satisfy the essentiality condi-
tions, that are integrable and verify the aggregate smoothness condition. Let (f, y)
be a linear cost share equilibrium of E. Then, for any public project z ∈ Y, there
exists a feasible allocation (γz, z) such that (f, y) is not z-dominated in the corre-
sponding economy E(S, z, α), for any α ∈ [0, 1] and for any coalition S.

proof: First observe that (f, y) is Pareto optimal. Let (γz, z) be the feasible allo-
cation defined by Lemma 3.9. Assume that there exist α ∈ [0, 1] and a coalition S

such that (f, y) is z-blocked by the grand coalition in the corresponding economy
E(S, z, α). Then there exists a feasible allocation (g, z) such that

∫

I
gdµ + c(S, α)(z) ≤

∫

I
ω(S, z, α)dµ

ut(g(t), z) > ut(f(t), y) for almost all t ∈ I.

If p and ϕ are, respectively, the price system and the cost distribution function
associated to (f, y), for almost all t ∈ I , it results

p(z) · g(t) + p(z) · ϕ(t)c(z) > p(z) · ω(t).

Moreover, by smoothness assumption and the properties of the vectors γz defined
by Lemma 3.9, it follows that

p(z) · g(t) > p(z) · γz(t).

So,
p(z) · (1 − α)g(t) + p(z) · (1 − α)ϕ(t)c(z) > p(z) · (1 − α)ω(t)

and
p(z) · αg(t) > p(z) · αγz(t)

and adding

p(z) · g(t) > p(z) · (1 − α)ω(t) + p(z) · αγz(t) − p(z) · (1 − α)ϕ(t)c(z) ≥

≥ p(z) · (1 − α)ω(t) + p(z) · α γz(t) − p(z) · (1 − α)c(z).

Then ∫

I
p(z) · gdµ =

∫

I\S
p(z) · gdµ +

∫

S
p(z) · gdµ >

∫

I\S
p(z) · gdµ +

∫

S
p(z) · (1− α)ωdµ +

∫

S
p(z) ·α γz(t)dµ− p(z) · (1− α)µ(S)c(z) >

∫

I\S
p(z)·ωdµ−

∫

I\S
p(z)·c(z)dµ+

∫

S
p(z)·(1−α)ωdµ+

∫

S
p(z)·α γz(t)dµ−p(z)·(1−α)µ(S)c(z) =

=
∫

I
p(z) · ωdµ +

∫

S
p(z) · α (γz(t) − ω) dµ − p(z) · (µ(I \ S) + µ(S) − αµ(S)) c(z)

that, given the definition of ω(S, z, α), contradicts the feasibility of (g, z). 2
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Proposition 5.2 Assume that the utility functions satisfy the essentiality condi-
tions and that are integrable. Let (f, y) be a Pareto optimal allocation of the econ-
omy E. If (f, y) is not a linear cost share equilibrium, then there exist α ∈ [0, 1], a
coalition S, a public project z ∈ Y and a feasible allocation (γz , z) such that (f, y)
is z-dominated in the economy E(S, f, α).

proof: In light of Theorem 3.8, the allocation (f, y) does not belong to the σ-core
of E for any contribution measure σ. In particular for σ = µ. So it is possible to
find a coalition S with µ(S) > 0, a public good z ∈ Y, and an integrable function
g : S → IRm

+ such that
∫

S
gdµ + µ(S)c(z) ≤

∫

S
ωdµ

and
ut(g(t), z) > ut(f(t), y), for almost all t ∈ S.

Since utility functions are continuous and monotone and since ω− c(z) � 0, we can
assume that ∫

S
gdµ + µ(S)c(z) −

∫

S
ωdµ = −δ < 0.

For each public project z ∈ Y, let us denote by (γz , z) the feasible allocation defined
by Lemma 3.9. As in the proof of Proposition 3.10, for any α ∈ [0, 1], there exists
an integrable function h such that, for almost all t ∈ S,

∫

S
hdµ =

∫

S
(αg + (1 − α)γz)dµ

and
ut(h(t), z) > ut(f(t), y).

Let us choose α and define the function

g̃(t) =

{
h(t) if t ∈ S

γz(t) + δ
µ(I\S)

if t ∈ I \ S

Then ∫

I
(g̃ − ω(I \ S, z, α))dµ + c(I \ S, α)(z) =

∫

S
hdµ+

∫

I\S
γzdµ+αδ−

∫

S
ωdµ−

∫

I\S
(1−α)ωdµ−

∫

I\S
αγzdµ+(1−αµ(I \S))c(z) =

∫

S
(αg+(1−α)γz)dµ+

∫

I\S
γzdµ+αδ−

∫

S
ωdµ−

∫

I\S
(1−α)ωdµ−

∫

I\S
αγzdµ+(1−αµ(I\S))c(z) =

(1 − α)
(∫

I
(γz − ω)dµ + c(z)

)
= 0.

So (f, z) is z-blocked by the grand coalition in the economy E(I \ S, f, α). 2

As consequence of Propositions 5.1 and 5.2, we obtain the following characterization
of linear cost share equilibria in terms of the veto power of the grand coalition
considered in infinitely many economies.
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Theorem 5.3 Assume that the utility functions satisfy the essentiality conditions,
that are integrable and verify the aggregate smoothness condition. Let (f, y) be a
Pareto optimal allocation of the economy E. Then (f, y) is a linear cost share equi-
librium if and only if there exists a family of feasible allocations {(γz, z)}z∈Y such
that (f, y) is not z-dominated in the corresponding economies E(S, z, α), for any
α ∈ [0, 1] and for any coalition S.

Remark 5.4 Let (f, y) be an allocation that is z-dominated in the economy E(S, z, α),
with α < 1, defined starting by a certain feasible allocation (g, z). Hence there exists
(h, z) such that ut(h(t), z) > ut(f(t), y) for almost all t ∈ I and

∫

I
hdµ + (1 − αµ(S))c(z) ≤

∫

I
ωdµ − α

∫

S
(ω − g) dµ.

Consider the measure ν defined as ν(A) =
(
µ(A),

∫

A
(ω − g) dµ

)
, for every A ⊂ S.

Applying the Lyapunov’s convexity theorem to the vector measure ν restricted to
S, we obtain that there exists S ′ ⊂ S with µ(S ′) = αµ(S) and

∫

S′

(ω − γz) dµ = α

∫

S
(ω − γz) dµ.

So
∫

I
hdµ + (1 − µ(S ′))c(z) ≤

∫

I
ωdµ −

∫

S′

(ω − g) dµ =
∫

I\S′

ωdµ +
∫

S′

gdµ

that is (f, y) is also dominated in the economy EC(S
′, z, 1).

Remark 5.5 We notice that, as it is clear from the proof of Propositions 5.1 and
5.2, the feasible allocations {(γz, z)}z∈Y in the statement of Theorem 5.3 are exactly
the same determined by Lemma 3.9.

If the continuum economy E coincides with the economy EC associated to a finite
economy (see the construction in Section 4), and the allocation (f, y) is constant
over agents of the same type (i.e. on each interval Ii), then we can assume without
loss of generality that, for each project z ∈ Y, γz(t) is constant on Ii, for i = 1 . . . n.
Indeed, the properties stated in Lemma 3.9 remain valid replacing the allocation

(γz, z) with a new allocation (γ̃z, z) where γ̃z(t) =
1

µ(Ii)

∫

Ii

γdµ, for each t ∈ Ii.

6 Non-dominated allocations in finite economies

The aim of this Section is to apply results obtained in Section 5 to the case of
economies with a finite number of agents. The analogous of Theorem 5.3 will be de-
rived using the correspondence of the finite economy E with the continuum economy
EC constructed in Section 4.

Given a feasible allocation (g1, . . . , gn, z) of the finite economy E, a public project
z and the vector of real numbers α = (α1, . . . , αn), with 0 ≤ αi ≤ 1, let E(z, α) be
a finite economy which coincides with E except for the initial endowment allocation
and for the cost function given respectively by

ωi(z, α) = αiωi + (1 − αi)gi
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and

cα =
n∑

i=1

αi

n
c.

The main result of this Section is the characterization of linear cost share equi-
libria in terms of the veto power of the grand coalition in infinitely many economies.

Proposition 6.1 Assume that the utility functions satisfy the essentiality condi-
tions, that are integrable and verify the aggregate smoothness condition.

Let (x1, . . . , xn, y) be a linear cost share equilibrium of E. Then, for any public
project z ∈ Y, there exists a feasible allocation (γ1,z, . . . , γn,z, z) such that for any
α = (α1, . . . , αn) with 0 ≤ αi ≤ 1, the allocation (x1, . . . , xn, y) is not z-dominated
in the corresponding economy E(z, α).

proof: Let ϕ be the cost distribution function associated to (x1, . . . , xn, y). It is
easy to verify that the allocation (f, y) defined by f(t) = xi if t ∈ Ii, is a linear
cost share equilibrium of the associated continuum economy EC with individual cost
function defined by ϕ̂(t) = nϕ(i) for almost all t ∈ Ii. In particular (f, y) is Pareto
optimal. For any z ∈ Y, let (γz, z) be the feasible allocation defined by Theorem
5.3. In view of Remark 5.5, we can assume that γz is constant among agents of the
same type. Denote by (γ1,z, . . . , γn,z, z) the corresponding feasible allocation in E.

If there exists z ∈ Y and α = (α1, . . . , αn) with 0 ≤ αi ≤ 1, such that
(x1, . . . , xn, y) is z-blocked by the grand coalition in the economy E(z, α), then

n∑

i=1

gi + cα(z) ≤
n∑

i=1

αiωi +
n∑

i=1

(1 − αi)γi,z (1)

and ui(gi, z) > ui(xi, y), for all i ∈ I .
Let us denote by S the coalition S = ∪n

i=1Ai, where Ai is a subset of Ii with

µ(Ai) =
αi

n
. Then µ(S) =

n∑

i=1

αi

n
and µ(I \ S) = 1 −

n∑

i=1

αi

n
. Let us define g̃(t) = gi

if t ∈ Ii, then ut(g(t), z) > ut(f(t), y) for almost all t ∈ I and, dividing (1) by n, we
obtain ∫

I
g̃dµ + (1 − µ(I \ S))ĉ(z) ≤

∫

S
ω +

∫

I\S
γzdµ.

So (f, y) is z-blocked by the grand coalition in the economy EC(I \ S, z, α) with
α = 1, hence a contradiction. 2

Proposition 6.2 Assume that the utility functions satisfy the essentiality condi-
tions and that are integrable. Let (x1, . . . , xn, y) be a Pareto optimal allocation of
the economy E. If (x1, . . . , xn, y) is not a linear cost share equilibrium, then there
exist α = (α1, . . . , αn) with 0 ≤ αi ≤ 1, a public project z ∈ Y and a feasible alloca-
tion (γ1,z, . . . , γn,z, z) such that (x1, . . . , xn, y) is z-blocked by the grand coalition in
the economy E(z, α).

proof: It is easy to verify that the allocation (f, y) defined by f(t) = xi if t ∈ Ii, is a
Pareto optimal allocation of the associated continuum economy EC and that it is not
a linear cost share equilibrium. For any z ∈ Y, let (γz , z) be the feasible allocation
defined by Theorem 5.3. In view of Remark 5.5, we can assume that γz is constant
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over agents of the same type. Denote by (γ1,z, . . . , γn,z , z) the corresponding feasible
allocation in E. It follows from Theorem 5.3 that there exists a public project z ∈ Y,
a coalition S and a number α ∈ [0, 1] such that (f, y) is z-dominated in EC(S, z, α),
that is there exists an integrable function g such that ut(g(t), z) > ut(f(t), y) for
almost all t ∈ I and

∫

I
gdµ + (1 − αµ(S))ĉ(z) ≤

∫

I\S
ωdµ +

∫

S
[(1 − α)ω + αγz] dµ (2)

Let us define gi =
1

µ(Ii)

∫

Ii

gdµ , then ui(gi, z) > ui(xi, y) for any i ∈ I , and, from

(2),

n∑

i=1

1

n
gi + (1 − α

n∑

i=1

βi)
c(z)

n
≤

n∑

i=1

αiωi +
n∑

i=1

βi(1 − α)ωi +
n∑

i=1

βiαγi,z

with αi = µ ((I \ S) ∩ Ii), βi = µ(S ∩ Ii) and αi + βi =
1

n
.

So
n∑

i=1

gi + (1 −
n∑

i=1

βiα)c(z) =
n∑

i=1

nαiωi +
n∑

i=1

nβi(1 − α)ωi +
n∑

i=1

nβiαγi,z =

n∑

i=1

n(αi + βi − αiβi)ωi +
n∑

i=1

nβiαγi,z =

n∑

i=1

(1 − nαβi)ωi + αβiγi,z

and (x1, . . . , xn, y) is z-blocked by the grand coalition in the economy E(x, α̂) with
α̂i = nαβi. 2

From the previous results we derive the following characterization of linear cost
share equilibria independently of any given cost distribution function.

Theorem 6.3 Assume that the utility functions satisfy the essentiality conditions,
that are integrable and verify the aggregate smoothness condition. Let (x1, . . . , xn, y)
be a Pareto optimal allocation of the finite economy E. Then (x1, . . . , xn, y) is a
linear cost share equilibrium if and only if there exists a family of feasible alloca-
tions {(γ1,z, . . . , γn,z, z)}z∈Y such that for each α = (α1, . . . , αn) with 0 ≤ αi ≤ 1,
(x1, . . . , xn, y) is not z-dominated in the economy E(z, α).

7 Appendix

7.1 Proof of Lemma 3.9.

For any public project z ∈ Y, let us define the sets

F (t, z) =
{
g ∈ IRm

+ ut(g, z) > ut(f(t), y)
}

and
F (t, z) =

{
g ∈ IRm

+ ut(g, z) ≥ ut(f(t), y)
}

.
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The first essentiality condition and strict monotonicity ensure that F (t, z) is non-
empty. Moreover, since ut(·, z) is continuous and quasi-concave, it results that it is
open and convex and clF (t, z) = F (t, z). Define

F (z) =
∫

I
F (t, z)dµ + c(z) −

∫

I
ωdµ

and
F (z) =

∫

I
F (t, z)dµ + c(z) −

∫

I
ωdµ.

The assumption of integrable utilities ensures that these definitions are indeed
proper. If x ∈ F (z), then

x =
∫

I
g(t)dµ + c(z)−

∫

I
ωdµ

with ut(g(t), z) ≥ ut(f(t), y), for almost all t ∈ I . Let us choose v � 0 and define

xn =
∫

I
gn(t, z)dµ + c(z)−

∫

I
ωdµ

with gn = g + 1
n
v.

Since xn ∈ F (z) and xn → x, then x ∈ clF (z) and F (z) ⊆ clF (z). Moreover, in
light of the essentiality and monotonicity assumptions and by Pareto optimality of
the allocation (f, y), we have that 0 ∈ F (z)\F (z), so for any z ∈ Y we can find an
integrable function γz , such that

∫

I
γzdµ + c(z) −

∫

I
ωdµ = 0

and ut(γz(t), z) ≥ ut(f(t), y), for almost all t ∈ I . Let p(z) be the price system
separating F (z) from −IRm

+ (notice that F (z) is convex by Lyapunov’s Theorem,
hence the Minkowski’s separating hyperplane Theorem can be applied, see e.g. [18,
page 38]). Then p(z) ≥ 0 and p(z) · F (z) ≥ 0, since F (z) ⊆ clF (z).
We claim that, for any integrable selection h(t) of the correspondence F (t, z), it
results p(z) ·γz(t) ≤ p(z) ·h(t), for almost all t ∈ I . Assume on the contrary that for
a selection h(t) of F (t, z) and for a coalition S of positive measure we would have
p(z) · γz(t) > p(z) · h(t), for almost all t ∈ S. Then we could define

ĥ(t) =

{
h(t) if t ∈ S

γz(t) if t ∈ I \ S

having that ut(ĥ(t), z) ≥ ut(f(t), y), v =
∫

I
ĥdµ + c(z) −

∫

I
ωdµ ∈ F (z) and

p(z) · v = p(z) ·
∫

I
ĥdµ + p(z) · c(z) − p(z) ·

∫

I
ωdµ =

p(z) ·
∫

I\S
γzdµ + p(z) ·

∫

S
hdµ + p(z) · c(z)− p(z) ·

∫

I
ωdµ = p(z) ·

∫

S
(h − γz) dµ < 0

hence a contradiction.

From the assumption c(z) � ω, it follows that p(z) ·
∫

I
γz dµ > 0. Hence there

exists a coalition A of positive measure such that p(z) · γz(t) > 0, for µ-almost
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all t ∈ A. Let us assume that for a vector x > 0 we have p(z) · x = 0. Define
gz(t) = γz(t) + x, for µ-almost all t ∈ A, and observe that ut(gz(t), z) > ut(f(t), y)
and p(z) · gz(t) > 0. Let A

′

⊆ A be a coalition of positive measure and ε ∈ (0, 1)
be such that ut(εgz(t), z) > ut(f(t), y), for µ-almost all t ∈ A

′

. Then p(z) · εgz(t) <

p(z)·gz(t) = p(z)·γz(t) on A
′

and, consequently, we can easily construct an integrable
selection of F (z) contradicting the previous claim. Hence p(z) · x > 0 and, since x

is arbitrary, we derive that p(z) � 0.
Now we want to prove that for almost all t ∈ I , if ut(g, z) > ut(f(t), y), then

p(z) · g(t) > p(z) · γz(t). Assume not, then there would exist a coalition S with
positive measure such that the correspondence

Γ : t ∈ S → {g : ut(g, z) > ut(f(t), y)} ∩ {g : p(z) · g ≤ p(z) · γz(t)}

has nonempty values. By measurability assumption, there exists an integrable se-
lection g(t) of Γ(t) defined over S. For g(t) it is true that

ut(g(t), z) > ut(f(t), y)

and moreover, by previous claim,

p(z) · g(t) = p(z) · γz(t).

Let C ⊆ S be a coalition of positive measure and ε > 0 be such that, for almost all
t ∈ C

ut(εg(t), z) > ut(f(t), y).

By strict positivity of the price p(z) we easily get a contradiction. 2

7.2 Proof of Proposition 3.10.

Since (f, y) does not belong to the σ-core, by continuity and measurability assump-
tion, there exists an allocation (g, z), such that ut(g(t), z) > ut(f(t), y), for almost
all t ∈ S, with µ(S) > 0 and

∫

S
gdµ + σ(S)c(z)−

∫

S
ωdµ = −δ < 0.

First we prove that (f, y) can be blocked by a coalition with arbitrarily big measure.
Denote by (γz, z) the feasible allocation defined according to Lemma 3.9.

We claim that there exists an assignment (h, z) such that ut(h(t), z) > ut(f(t), y),
for almost all t ∈ S, and

∫

S
hdµ =

∫

S
(εg + (1 − ε)γz)dµ.

To show our claim, consider the vector measure ν defined over measurable subsets
A of S by (

µ(A),
∫

A
(g − γz)dµ

)
.

By Lyapunov Theorem, there exists a measurable subset A of S such that ν(A) =
εν(S). Let ḡ(t) be an assignment for A and γ > 0 be such that

∫

A
ḡdµ =

∫

A
(g − γ)dµ
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and ut(ḡ(t), z) > ut(f(t), y), for almost all t ∈ A. Define a new assignment for the
allocation S by the following law

h(t) =

{
ḡ(t) if t ∈ A

γz(t) + γµ(A)
µ(S\A)

if t ∈ S \ A

Then
∫

S
h(t)dµ =

∫

A
ḡdµ +

∫

S\A
γzdµ + γ =

∫

A
gdµ +

∫

S
γzdµ −

∫

A
γzdµ =

∫

A
(g − γz)dµ +

∫

S
γzdµ = ε

∫

S
(g − γz)dµ +

∫

S
γzdµ =

∫

S
(εg + (1 − ε)γz)dµ

and by monotonicity assumption, ut(h(t), z) > ut(f(t), y), for almost all t ∈ S,
proving our claim.
Let ε ∈ (0, 1) and denote by Sc the coalition Sc = I \S. Consider the vector measure
ν defined over measurable subsets A of Sc by

(
µ(A), σ(A),

∫

A
(γz − ω)dµ

)
.

Again Lyapunov Theorem ensures the existence of a subset S ′ of Sc such that µ(S ′) =

(1 − ε)µ(Sc), σ(S ′) = (1 − ε)σ̂(Sc) and
∫

S′

(γz − ω) dµ = (1 − ε)
∫

Sc
(γz − ω) dµ.

Let us define

γ(t) =

{
h(t) if t ∈ S

γz(t) + εδ
µ(S′)

if t ∈ S ′

then, ut(γ(t), z) > ut(f(t), y) for almost all t ∈ S ∪ S ′ and
∫

S∪S′

γdµ + σ(S ∪ S ′)c(z) −
∫

S∪S′

ωdµ =

=
∫

S
(εg + (1 − ε)γz) dµ +

∫

S′

γzdµ + εδ + σ(S ∪ S ′)c(z) −
∫

S∪S′

ωdµ =

= ε

∫

S
(g − ω) dµ+ε

∫

S
ωdµ+(1−ε)

∫

S
γzdµ+

∫

S′

γzdµ+εδ+σ(S∪S ′)c(z)−
∫

S∪S′

ωdµ =

= ε

∫

S
ωdµ+(1−ε)

∫

S
γzdµ+(1−ε)

∫

Sc
(γz − ω) dµ+(1−ε) (σ(S) + σ(Sc)) c(z)−

∫

S
ωdµ =

= (1 − ε)
[∫

I
(γz − ω) dµ + c(z)

]
≤ 0.

So, being µ(S ∪ S ′) = 1 − εµ(Sc), if ε → 0 the measure of the coalition blocking
(f, y) can be chosen close to one.
Now we prove that (f, y) can be blocked by a coalition with arbitrarily small measure.

Let α ∈ (0, 1) with α < µ(S) and assume that α = βµ(S). As before, we can
chose a coalition S ′ ⊆ S such that µ(S ′) = α = βµ(S), σ(S ′) = βσ(S) and

∫

S′

(g − ω)dµ = β

∫

S
(g − ω)dµ.

Hence we have the inequality
∫

S′

gdµ + σ(S ′)c(z) −
∫

S′

ωdµ = β

[∫

S
gdµ + σ(S)c(z) −

∫

S
ωdµ

]
≤ 0

that completes the proof. 2
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