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Abstract

In this paper, I examine a dynamic general equilibrium model with trans-
actions costs imposed on the trading of assets in the financial markets. These
transaction costs are general functions in the model and can represent any
costs associated with asset trade that result in a real loss of resources. The
presence of these transaction costs results in a Pareto inefficient equilibrium
allocation. Attempting to fix this problem, the planner will intervene by ad-
justing the transaction costs and returning the funds to the households through
a tax/subsidy scheme. The planner’s intervention must satisfy fiscal balance. 1
prove that over a generic subset of parameters and subject to an upper bound
on the number of household types, there exists an open set of planner interven-
tions that lead to a Pareto superior allocation.

1 Introduction

Transaction costs are pervasive in financial markets, both those in the real world
and those studied in economic models. Some transaction costs are measurable and
apparent such as a tax imposed by the government on the trade of an asset. Other
transaction costs are unmeasurable, but are the accepted explanation for why benefi-
cial trade does not occur. The models of derivative asset pricing rely on transaction
costs to justify the pricing of an otherwise redundant asset. In other financial mod-
els, the holding of an asset is divided into purchases and sales. Without transaction
costs, these two variables would be indeterminate.

Recently, interest in explaining the emergence of transaction costs has arisen. One
explanation for transaction costs is that they emerge because a financial intermediary
is required to facilitate asset trade. This intermediary must be compensated a market
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wage for the labor required to produce such a service. The most recent work that
corrects many of the shortfalls of the previous literature is Martins-da-Rocha and
Vailakis (2009). My work does not attempt to explain why transaction costs emerge,
rather it studies conditions under which an adjustment of these transaction costs can
improve market welfare. The welfare criterion that will be used in this paper will be
the Pareto criterion.

To illustrate the normative ramifications of transaction costs, suppose that enough
assets exist to span all states of uncertainty. If transaction costs were removed from
the model, then all households would perfectly insure against future risk by trading
financial assets. As a result, the equilibrium allocation would be Pareto optimal,
meaning that a planner cannot intervene and make some households better off without
making others worse off. However, with transaction costs, the equilibrium allocation
is inefficient and there is justification for planner intervention.

The planner will take some fraction of the value of the transaction costs and
distribute it to the households with a tax/subsidy scheme. The adjustments made
by the planner must satisfy fiscal balance, that is, the sum of all adjustments must
have value 0. If the transaction costs are taxes, this statement says that the plan-
ner’s tax reform must be revenue neutral, that is, the tax revenue collected does not
change. The main result states that over a generic subset of parameters and subject
to an upper bound on the number of households, there exists an open set of planner
interventions that lead to a Pareto superior allocation.

Recent papers by Citanna et al. (2006) and del Mercato and Villanacci (2006)
analyze the normative impact of a government tax policy. Both papers, although
each has a different setup, arrive at the same conclusion. That conclusion is that
with an incomplete markets setup, for a generic subset of endowments and utilities,
the introduction of a tax can be Pareto improving. My result differs from both
works in two key aspects. First, I focus entirely on one friction (transaction costs)
and do not require an incomplete markets setting. Second, these two papers prove
that for an economy without tax frictions, introducing taxes to redistribute wealth
will lead to a Pareto improvement. However, tax frictions must certainly be present
in any economy before a government can redistribute wealth. What I do is prove the
regularity of a transaction costs equilibrium (an equilibrium in which tax frictions
are already present) and then prove my generic planner intervention result given that
equilibrium.

My paper is a descendant of the works by Cass and Citanna (1998) and Elul
(1995) which questioned whether financial innovation is always welfare improving. In
a setting of incomplete financial markets, both of the above papers prove that there is
an open set of payoffs for the new assets (under additional dimensional restrictions)
such that the introduction of this new asset actually makes all households worse
off. As governments are not in the business of creating new assets, I claim that it
is more interesting to study the planner adjustments of transaction costs (taxes), a
frequent action performed by governments. The framework used to prove the Cass
and Citanna (1998) result, the Citanna et al. (2006) result, the del Mercato and
Villanacci (2006) result, and the result presented in this paper was developed by
Citanna, Kajii, and Villanacci (1998).



This paper is organized into three remaining sections. In section 2, I introduce
the general equilibrium model with transaction costs in the financial markets and
define an equilibrium. In section 3, I state and prove the main result of this paper.
In section 4, I provide the proofs of two lemmas stated in section 2.

2 The Model

Consider a 2 period general equilibrium model with S states of uncertainty in the
second time period. Denoting the first period as the s = 0 state, I will number the
states as s € S = {0,...,S}. At each state, H > 2 households trade and consume
L > 2 physical commodities. There are a finite number of both households and
physical commodities with h € H = {1,.., H}. The commodities are denoted by
the variable z. Define the total number of goods as G = L(S + 1) and then the
consumption set is the entire nonnegative orthant: z" € Rf Vh € H. Concerning
notation, the vector x € Rf & contains the consumptions for all households, the vector
2"(s) € R contains the consumption by household % in state s (of all commodities),
and the scalar z7'(s) € R, is the consumption by household h of the good (s,[) or
the ["" physical commodity in state s.

Households are endowed with commodities in all states. These endowments are
denoted by e. I assume that all households have strictly positive endowments:

Assumption 1 eh >>0 VheH!

In addition to endowments, the household primitives include the utility functions
ul Rf — R subject to the following assumptions:

Assumption 2 ulis C3, differentiably strictly increasing (i.e., Du”(2") >> 0
vz € RY), differentiably strictly concave (i.e., D*u"(z") is negative definite Va" €
RS, ), and satisfies the boundary condition (cIU"(z") C RS, where U"(z") = {2’ €
RS, :u(2) > u"(2")}) Vh € H.

Define the commodity prices as p € R%\{0}. Under assumption 2, the prices
satisfy p >> 0. Of all the physical commodities in each state, the final one (I = L)
is called the numeraire commodity, meaning that all other commodities are priced
relative to this one. For simplicity, I normalize the price of the numeraire commodity
pr(s) =1 in every state s € S.

The commodities are perishable, so the households require financial markets to
transfer wealth between states. I assume that there are J assets (J < S). These
assets are numeraire assets meaning that the payout of each asset is in terms of the
numeraire commodity [ = L. The payouts are assumed to be nonnegative and are
collected in the S x J yields matrix Y :

Tl(]_) T‘J(].)
Y = : :
r1(S) ... r(9)

IThe notation e >> 0 means that el'(s) > 0 V(I, s).
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To get the payoff in terms of the unit of account, I make the preserving transformation

pr(l) 0O 0 ri(1) ... 7s(1)
Y = 0 0 . : :

0 0 pL(S) 7’1(5) TJ(S)
Summarizing what I said so far concerning the parameter Y :

Assumption 3 Y is a nonnegative and full rank S x J yields matrix.

The assets are in zero net supply and are denoted by the variable . As with
consumption, 8" € R’ is the portfolio held by an individual household A, 8 € R¥”7 are
the portfolios of all households, and 9? € R is the amount of asset j held by household
h.

For each asset j, there exists an asset price ¢; € R, which can be viewed as the
payoff of the asset (in terms of the unit of account) in state s = 0. Combining
the endogenous asset prices with the exogenous payouts, I will represent the overall
returns of the financial markets in the (S + 1) x J returns matrix R :

_ | —q
R = { . ] |
I will model the transaction costs as costs on the trade of financial assets. Initially,
all households have zero asset holdings. Upon trading assets, households must pay

the real transaction costs. The transaction costs for the entire portfolio (paid in
units of account) will be determined by the mapping

Fr . RIS R,

FR(0Y) = X a7 (0"

For any portfolio 6", the value F" (Hh) is the value that must be paid as transac-
tion costs. The transaction costs are nonnegative. The transaction costs depend
(linearly) upon the asset price level (this is natural since the transaction costs will
represent a loss of some physical amount of assets). The transaction costs are het-
erogeneous across households.

The mapping f]h is the actual amount of asset j that must be paid as transaction
costs. These costs (in terms of asset j) will depend not only on the position of asset
7, 8?, but also on the position of the other assets 8" ;- The transaction costs mappings
(parameters of the model) are given by the vector-valued function f" = (f7, .., f¥)
where

[ RS Ry VL

I impose the following assumptions on fjh Vh and V.
Assumption 4 fjh is C3, differentiably strictly convex in 0?, and satisfies

th(G) = 0 for any § € R’ with ; = 0. By strict convexity in 9?, I mean that
o’ D*f] (0")a >0 Va with strict inequality if a; # 0 and 9? #0 Vj.



Claim 1 Given g >> 0, F" is C3, differentiably strictly convex, and satisfies F(0) =
0.

Proof. The first and the last are obvious. For the second, note that the J x J
Hessian for F'* can be equivalently written as:

DEF () = 3 ;- D) (6")

where ¢; is a scalar multiplier of the Hessians D? fjh (Qh). With ¢ >> 0, since
a” D2 f! (6") a > 0 Va, then a” D*F" (6") a > 0 Va. For strict inequality, if 0" # 0
and since a” D f" (§") a > 0 Va : a; # 0 and this holds Vj, then a” D2F" (6") a > 0
Ya#0. m

Though this paper does not offer an explanation for why the transaction costs are
strictly convex, the recent work by Martins-da-Rocha and Vailakis (2009) may shed
some light on the question. Their work models transaction costs as an endogenous
result of the labor that must be input to produce financial intermediation. The labor
to intermediate a financial transaction can be supplied by any of the households in
the economy (pure competition). The production set for intermediation needs to
be convex. Further, households receive a convex disutility from labor. As a result,
the equilibrium transaction costs for a portfolio #” € R’ are a function of the utility
loss from providing the labor necessary to intermediate #". Martins-da-Rocha and
Vailakis implement a linear transaction costs structure (a constant commission paid
by households on all asset trades). With a linear transaction costs structure, there
is only one variable to endogenize: the slope. However, with a convex production
set and convex disutility, the intuitive idea (though harder to implement) is that the
per-unit transaction costs will strictly increase with the size of the trade. This would
endogenously generate the strict convexity of transaction costs that I assume in my
model.

Define the canonical representation for the transaction costs mappings as that
specification whereby the transaction costs are independent across assets. In this
case, fjh is only a function of 0? and D2F" (Gh) is a positive definite, diagonal matrix.

The transaction costs are paid in terms of the numeraire assets and can be likened
to a sieve which collects a certain percentage of the total asset trade. Since the assets
are numeraire and pay out in the real physical commodity [ = L, the transaction costs
have a real effect in that the sieve is removing the commodities [ = L from the total
resources of the economy. A transaction costs equilibrium is thus defined as follows.

Definition 1 <(zh, Hh) her P> q) 18 a transaction costs equilibrium if

1. Vh € H, given (p,q),

(mh, Qh) s an optimal solution to the household’s maximization problem

205 u'(@)
subj to p(0)(¢"(0) —(0) =40 =3 q;- f1 () =0 - (HP)

Vs >0 p(s)(e"(s) — x(s)) + >-;7i(s)0; >0



2. Markets Clear

Zh QJ?(S) = Zh 6?(‘9) V(Z,S) ¢ {<L7 1>= ) (Lv S)}
Sonrh(s) =Y peh(s)+ 30,30, m5(s) - 0] Vs> 0.
> 9? + 20, fF (eh) =0 Vj.

The existence of such an equilibrium is well-known and hence its proof is omit-
ted.

The total financial payout in s = 0 for some asset j including both the asset price
and the transactions costs is given by —g; - f;‘ (Hh) where

;0" = 05+ £ (0").
Op is the set containing all potential equilibrium portfolios (E for equilibrium),

that is, assets that satisfy household optimization and market clearing. So far nothing
I have said indicates that Oz # R’, but claims 2 and 3 will do just that. By

construction f]h satisfies the conditions of assumption 4. Let f" = ( flh, o f}”) be the

Cartesian product of (f;h> with f: @ — f"(0g).

Vj
Claim 2 In equilibrium, q - D f" (Hh) >>0 VO" € Op.

Proof. The following are the first order conditions of the household’s problem (H P)
with respect to " where A" are the Lagrange multipliers:

—(q1, -, q7) - th (eh)
7’(.1)

N\ = 01 ). (1)

r(S)

~ £h(gh
This is best seen as the (j,k) element of Df" (Hh) is %853 ) and the first order

condition for any one asset 02 is given as:

o (")

- Zj 4550,
A (1) —0. 2)

of; (")

h
25— <0 V.

From (2) with 3> A"(s)rx(s) > 0 and A\"(0) > 0, then — >
This finishes the proof. m
Take the canonical representation for the transaction costs in which fjh is only a

function of 9;-‘ . Then fjh is only a function of 0;‘ and D f" (9") is a diagonal matrix.



Claim 3 Under the canonical representation, equilibrium conditions imply ¢ >> 0
and f': ©p — f"(OF) is an invertible function.

Proof. From the previous claim, ¢- D f* (Gh) >> 0 V0" € ©p. Under the canonical
representation, D fh (Hh) is a diagonal matrix. Thus, if I can show that ¢ >> 0,
then ¢ - Df" (Gh) >> 0 implies that D f" (Hh) has strictly positive diagonal elements

for all 9" € ©p. Applying the Inverse Function Theorem would yield that f* is an
invertible function.
Consider any asset j and suppose for contradiction that ¢; < 0. Then ¢; < 0 and

8f]i;gf ) < 0 Vh from (2). By the definition of
oft (0" -
—]aej =1+DfI(0") <0,

then Df" (0%) < —1. Since f! : R — R, has the global minimum at 6" = 0, then
9? < 0. From the market clearing condition:

doh fgh (9?) =0,

there exists some households such that f;” (9?) < 0. For these households, the finan-
cial payout in state s = 0 is given by

—q; - [ (0)) <0

and the payout in states s > 0 is given by

73(3)9? < 0.

As a result, these households are not optimizing as 0? = 0 is affordable and strictly

ofr(o" eps
preferred. Thus ¢; < 0 and %j) < 0 cannot be an equilibrium outcome for any

household . =

To proceed, I will need to use the inverse function of f*: @5 — f" (©g). Under
the canonical representation, f " is invertible. Without the canonical representation,
fh may not be invertible. I will return to this point in lemma 2. For now, I state
the results conditional on f " being an invertible function.

- - _ -1
Claim 4 If f": O — f"(Og) is an invertible mapping and Y - [th (Qh)] s a

nonnegative matriz for all equilibrium 0", then ¢ >> 0.2

2Since Y is nonnegative by assumption 3 and under the canonical representation D f" (Hh) is a

strictly positive, diagonal matrix, then for an open set of matrices around the canonical representa-
. -1

tion, Y - [D f (Qh)} is nonnegative. For this open set, the nonnegativity assumption in claim 4

need not be stated.



_ _ -1
Proof. Since f" is invertible, the matrix [D fh (Hh)] has full rank. Thus Y -

. -1
[D fh (Hh )] is a full rank matrix. From the first order conditions given in (1) :

(A1), .., A"(9))

o,

gDf" (6") =

Thus, the asset prices ¢ are given by:

(A"(1),.., A*(9))
A" (0)

q= _Y,[th(gh)}—l

. -1
Since Y - [D fr (Qh)] is a nonnegative, full rank matrix, there exists at least one

strictly positive element in each column. As A" >> 0, then ¢ >> 0. =m
I will define the new asset variable " € R’ such that

nh = fh (Hh) or 77? = fj}»l (Qh) vJ.
If f*: ©p — f"(Op) is invertible, then 3¢" : " (Op) — O such that
N\ -1
g = (fh>
g = o
The vector g" = (gf', .., ¢}) is such that g/ : " (©p) — Ris C? Vj. Further, if nt#0

Vj, then 9? =+ 0 V7 since 77? = fjh (Hh) = 9;‘ + fjh (Hh) .
With this alternative asset, I will redefine a transaction costs equilibrium.

Definition 2 < (xh, nh) e+ P q) is a S—transaction costs equilibrium if

1. Yh € H, given (p,q),

(a:h, nh) 18 an optimal solution to the household’s maximization problem

s 2
sugj7to p(0)(e"(0) — 2(0)) —qn >0 : (HP2)

Vs >0 p(s)(e"(s) —a(s)) + 22, mi(s)g} (n) > 0
2. Markets Clear

th?(3> :Zhe?(s) V(Z’S) ¢ {(L,l),..,(L,S)}.
S0 h(5) = Son ehls) + 300 30, ra(5)gl () Vs > 0,
>oh 77? =0 Vi



Define the total financial payout in each state s > 0 as the function
G . R'SR
G? (nh) = Zj rj(s) -g? (nh) .

Then G" : R — R defined as the Cartesian product G* = (G?, ...,Gg) is given
equivalently by:

g (")
G" (nh) =Y. :
95 (n")
gt (n")
where : = ¢" (n") . Thus, the derivative of G" (") (an S x J matrix) is
h
95(n")

given by:
DG" (nh) =Y - Dg" (nh) .

Dg" (nh) has full rank and so DG" (nh) has full column rank.
Define the (S + 1) x G price matrix

p(0) 0 0
P=|0 .. 0
0 0 p(S)

I can characterize the S—transaction costs equilibria with a system of equations .
Definen =H(G+J+S+1)+J+G— (S+ 1) as the number of variables. Given

he 1 the variables & = ((xh, A 77h) her P q) constitute

a B—transaction costs equilibrium iff ®(£,0) = 0 € R™ where

parameters o = (eh, u”, fh)

Do) —
(FOCxz) Duh(xh§ —\'p

p(0)(e"(0) — 2(0)) — g1
(5C) p(s)(€H(s) — 2(5)) + 32, 75()g! (1) Vs > 0
oo (s st)
(MCx) Y penlel(s) = a(s)) VI#L,¥s >0
(MCU) ZheH 77h

. . —2
Claim 5 If f": ©p — f"(©g) is an invertible mapping and Dth [th Qh ]

is a positive semidefinite matriz for all equilibrium 0", then Yoo "(s) - Dth 77
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is a negative semidefinite matriz.’

Proof. I will employ the Einstein summation convention in this proof for notational
simplicity. A good reference is Lee (2006).

As ¢" = (fh) _1, then for any 6" :
gh o fh (eh) _ 9h
Dg" (" (")) - DJ" (6") = L.

Define n" = fh (Hh) and ¢/ = Y ss0 M(s)r(s) > 0. Then premultiply the above
equation by (gbl, . gb‘]) to obtain:

(¢",..0") Dg" (") - DS* (6") = (&', .. ¢") (3)
Equation (3) is equivalent to (using the Einstein summation convention):
o' Dg; (") - D" (0") = (¢',..,6")
Taking a second derivative yields:
. ~ 2 ) ~
&' D2l (n") - (D" (6")) "+ ¢/ Dug! (") D*F (67) =o0. (4)

Define (¢, ..,1”) such that ¢* = ¢’ Dig" (1) . Then (4) can be written as:

. ~ 2 ~
&' D! (") - (D" (0")) +v* Dt (6") = 0. (5)
From the first order conditions with respect to n} of the problem (H P2) :
T4k
| robgeny |

r7(S)Dxg} (n")
By the definition of ¢/ and ¢*, the terms ¢¥* = \"(0)qx Vk. Thus, (5) reduces to
A . 2 .
&' D! (") - (D" (6")) + X"(0)" D2 (6") = 0. (6)
By definition, [ (Gh) =g~ f (Hh) . Since f" (Hh) = 0" 4 fh (9h) , then

D*F" (9") = ¢"D*f (") .

3Since D2F" (9h> is positive semidefinite from claim 1 and under the canonical representation
_ -2
[D Nk (Gh)} is a strictly positive, diagonal matrix, then for an open set of matrices around the
. )
canonical representation, D2 F" (Qh) . [th (Gh)] is positive semidefinite. For this open set, the

semidefinite assumption in claim 5 need not be stated.
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By definition, 3, \'(s) - D*G" (n*) = ¢/ D¢} (/") .
Thus, inserting these definitions into (6) and rearranging terms yields the final
equation:

> N(s) - DGE () = —\0)DF" (6) [D I (9’1)} - (7)

If D2F" (0") [th (Qh)} i is a positive semidefinite matrix, then >, \"(s)-D*G" (n")
is a negative semidefinite matrix. This completes the proof. m

As a well-known regularity result extended to this model, I state without proof
the following lemma (with associated well-known corollary).

Lemma 1 The matriz De¢®¢ 0—0 has full row rank on a generic subset of endow-
ments £ = {(")ne 2 : " >> 0}.

Corollary 1 Over a generic subset of endowments €& = {(e")ne » : € >> 0}, then
(i) 3 < L (without loss of generality, | = 1) such that (ef'(s) — 2%(s)) #0 Vs > 0,
Vh and (ii) 77;? #0 Vj, Vh.

Critical in defining the S—transaction costs equilibrium is that the mapping f" :
O — fh (Op) is invertible. Up until now, the results only hold conditional on the
mapping f" being invertible. Under the canonical representation, the mapping f his
invertible. No known conditions exist to guarantee that f " is always invertible for
the general representation. Lemma 2 will find an open set in which all mappings
f" will be invertible and this is possible as the set of invertible matrices is an open

set. The proof of lemma 2 is contained in section 4.

Lemma 2 There exists an open set of transaction costs mappings (fh)h6 ” such
that for mappings in this set and endowments (eh) in a generic subset of £, the

mapping f": Op — fh (OF) is invertible Vh € H.

he H

The next lemma will be useful in the proof of the main theorem. The result
from the lemma is sufficient to prove that, over a generic subset of endowments, all
equilibrium allocations are Pareto inefficient. The proof of lemma 3 is contained in
the appendix.

Lemma 3 With H < S, the matriz
AW (ef(1) —21(1)) .o AT (e (1) — 2f'(1))

ALS)(EL(S) — 21(S)) .. AF(S)(el(S) — 2 (S))

has full column rank on a generic subset of endowments & = {(e")e  : e* >> 0}.

41t is possible to use investment constraints to restrict the asset trade to a subset such that
( f h)h are invertible over the restricted domains. This, however, adds an unwanted additional
€

friction to this transaction costs model.

11



The fact that g;? is strictly concave leads to the inefficiency of the equilibrium allo-
cation. If gj’? was a linear function of ng-l only (Vh and Vj), then the equilibrium would
exactly equal the GEI equilibrium. With complete markets J = S, the equilibrium
allocation would be Pareto optimal.

This inefficiency in the equilibrium allocation (a generic result given lemma 3)
justifies planner intervention. The planner will make adjustments to the transaction
costs while satisfying fiscal balance. For asset j, >, 4 f;‘ (Hh) is the total amount of
asset lost due to the transaction costs. The planner will intervene by taking the value
Vi Dohen f;‘ (Hh) and returning it to the households using an anonymous subsidy /tax
scheme. The planner choice v; can be either positive (a reduction in transaction
costs) or negative (an increase in transaction costs).” Fiscal balance requires that
the net adjustment has value zero:

DD 11 (0") =0, (BB)

I will call this the budget balance (BB) equation.

The planner has tools given by the vector v = (...,7]-, ) € R/, I will call any
equilibrium that results following planner intervention the planner updated equil@)—
rium. This is in contrast to the original S—transaction costs equilibrium. If vy = 0,
the planner is taking no action and the planner updated equilibrium is identical to
the original S—transaction costs equilibrium.®

Under the tax/subsidy scheme, the households are likely to make different op-
timizing decisions. Define the asset choices of the planner updated equilibrium as

~h
<9 ) . Notice that the original asset choice 8" under the S—transaction costs
heH

equilibrium will still be feasible given the newly introduced tax/subsidy scheme.
The tax/subsidy scheme will be such that after planner intervention, the house-
holds will have asset payouts given by:

rh(s) = pjTj(S) if é5<0
Pi(s) = (2—p,)ri(s) if 0 > 0.

The variable (pj)vj' is determined uniquely by 7 from the materials balance condition:

AR\ T AR\ T ~h
ijheH (9j> +<2_pj)zhe7-l <9j) = (=) ZheHej'
The materials balance condition can be equivalently rewritten (as 77? # 0 Vj and

Vh € 'H from corollary 1 implies ), ,, 9? < 0Vj):

~h ~h\
(L =) Znerty =2 X pen (91')
~h ~h\ T
ZheH 9]’ —2 Zhe?—t <9j)
?Implicitly, I require that v, < 1, since it is not well-defined for a planner to reduce the transaction

costs by more than 100%.
6Planner inaction trivially satisfies the budget balance equation.

P =
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If v; > 0, then p; < 1, so debtors 9? < 0 pay back less and creditors @;L > 0 receive a
higher payout.

The planner tool 7 is of dimension J. However due to the budget balance equation
(BB), the planner only has J — 1 degrees of freedom in choosing . To obtain the
result that the planner can use the vector v to generically effect a Pareto improvement,
there must be as many free tools as households. Thus, throughout this work, the
assumption H < J — 1 is essential.”

3 The Result

Theorem 2 Under assumptions 1-4 with both 2 < H < J —1 and L > 2 and for
parameters o = (eh, u”, fh) ne 1, belonging to a generic subset of & = & XU X F where
E = {(e"Mne 1 : e" >> 0}, U is the set of utility functions satisfying assumption 2, and
F is the set of transaction costs mappings satisfying assumption 4 and belonging to
the open set given in lemma 2, then given the original 5—transaction costs equilibrium
allocation, there exists a planner policy satisfying fiscal balance such that the planner
updated allocation is Pareto superior and the new equilibrium is reqular.

Proof The implication of the theorem is that an open set of 7 exists (call
it A) such that if 7 € A, then all households are made better off, provided that
H < J —1. The proof of this theorem will follow the framework of Citanna, Kajii,
and Villanacci (1998), henceforth simply CKV. The principal task will be to show
that the vector of household utilities U (¢,7) = (u!(z'), .., u” (z')) is a submersion.

Picking a vector of parameters ¢ = (éh, a”, fh) he such that (éh) he H belongs
to a generic subset of £, then all resulting S—transaction costs equilibria are regular
values of ®. In particular, this means that there exists an open set X' around & such
that for any parameters o € ¥’ the resulting equilibria satisfy the rank condition of
lemma 1. The set of (z"), . such that (u'(z'), .., u” (z")) >> (u'(z"), ., u" (z7))
is an open set where (i'h) he 718 the equilibrium allocation resulting from the original
parameters . As such, if for some planner tool v*, the resulting planner updated
allocation is Pareto superior, then all planner updated equilibrium allocations given
~ in an open neighborhood around ~* are Pareto superior as well.

Given parameters o = (eh, ul, fh)h6 2o the variables é = ((ih, fyh) hen , D, Q) and
policy parameters 7 constitute a planner updated equilibrium iff F(S ,7,0) =0. I has

one more equation than the system ® used to define a —transaction costs equilibrium
and is defined as:

TIf the assumption H < .J — 1 appears restrictive, using the idea from Cass and Citanna (1998),
the parameter H can be viewed as the number of different types of households. All households of
the same type will have parameters (endowments, utilities, and transaction costs mappings) that lie
in an open set around the specified parameters for h € H.
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F(é? s U) =

FOCx() Duh(ﬁ:h.) ~ AP
HO)(eh(0) — #(0)) — Gif*

(BC) P(s)(e(s) — (s)) + 30, ()" (7") Vs > 0
~h —(j

(FOCU) A ( yh. Dgh(ﬁh) )

(MCa) S en(€l(s) — &(s)) V% L¥s > 0

(MCU) Zhe?—[ ﬁh

(BB) >3 Vi onen (5 — 9} (i)

The matrix Y" is the payout function with terms (r;‘(s)) as defined at the end of
section 2. . X

By definition, if I'(§, 0,0) = 0 and ®(£,0) = 0, then £ = £.

Define the matrix (H +n + 1) x (n + J) matrix ¥y :

U, = ( DEUA(&'V) E) > ‘
DeI'(€,7,0) DyI(€,7,0)

From CKV, if U, has full row rank, 3¢ # £ s.t. £ satisfies I' = 0 (for some ~) and
U(é) > U(¢). The matrix ¥ is square if H +1 = J, but if H + 1 < J, then there
are more columns than rows and I must remove some columns (it does not matter
which) in order to obtain a square matrix ¥. This matrix ¥ does not have full rank

iff Jv € RET+ st &' (€,7,v,0) = 0 where

R T
(I)/<€777V70-) = ( VT;IJ/QU_ 1 ) :

I will have proven the theorem if I can show that for a generic choice of o € ¥, there
does not exist (£, v) s.t.

d(,0) = 0 (P, D)
(£, 0,v,0) = 0.

Counting equations and unknowns, (®,®') has n equations in ®, n variables &,
H + n + 2 equations in &', and only H + n + 1 variables v. I must show that over
a generic subset of parameters (exactly which generic subset will be discussed next),
the system of equations (®,®’) (more equations than variables) has full rank. To
show full rank of (®,®’), I will reference the (ND) condition of CKV, which is a

sufficient condition for the full rank of (®, ®'). The condition states that for v = 0

14



and é = ¢, the matrix
\IJT
( ( T ) D,9’ > has full row rank (ND)

where o are the parameters on which the genericity statement is made.

For simplicity, I divide the vector v into subvectors that each represent a certain
equation in ¥. Define v7 = (Au”, AzT, AN", AT, ApT, Aq”, Ab) € RA+T"+1 where
each subvector corresponds sensibly to an equation (row) in ¥ as follows:

A" = U(E)
AzT < FOCx
AN —= BC

AnT < FOChy
Apl = MCx
Aq¢" < MCny
Ab < BB.

ch
With v = 0, the variables ((ih,)\ ,f7h> . D, cj) = ((xh,)\h,nh) D, q) A
heH hen
subset of the equations v"¥ = 0 are given by (corresponding to derivatives with
respect to ((xh, A nh)hGH) in that order):

Aup Dul(2") + Azl D*ul (") — AN P — Ap"A =0.  (8.a) (8)

T
_szpT + A?ﬁf < YD;}?(U}L) ) =0. (8b)

AN, < YDgi?(nh) > + A Y A'(s) - D2G" (n") + (8.0)
Aqt + Ab (7 . (_[J — Dgh(nh))) =0.

where A is the (G — S — 1) x G matrix

(Ir-1 0) O 0
A= 0 0
0 0 (Ip-1 0)

and >, o N'(s) - D2G" (") is the J x J negative definite matrix defined in section
2.8

8The term 7 - (I; — Dg"(n™")) is the 1 x J derivative matrix of the budget balance equation with
respect to n”. The proof of the result requires me to prove the (N D) condition for 5 = 0. Thus,
this term has value 0 and will be ignored in future analysis.
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For simplicity, I break up the analysis into two cases. Those are Case I: Az} # 0
Vh € ‘H and Case II: Az} = 0 for some h € H. In Case I, I show that (N D) holds
over a generic subset of parameters. In Case II, I show that the system of equations
(@, ®") will generically not have any solution.

Case I: Azl #£0 YheH
Claim 6 (Auh,ApT, AqT) #0 VheH
Proof. Suppose that (Auy, Ap”, Ag”) = 0 for some h. Then (8.a) reads
Azt D*u"(2") — AN P = 0.

Postmultiplying by Az, and using (8.b), I obtain

and using (8.c) with A¢” = 0, I finally reach
h
Azl D*u"(2")Axy, = —An} (Zs>0 Mi(s) - D2G" (nh)> An,. (9)

As 3 o A"(s)- D®*G" (n") is a negative semidefinite matrix, then the right-hand side
of (9) is nonnegative. Meanwhile, from assumption 2, the left-hand side is strictly
negative. The contradiction finishes the claim. m

A*
Claim 7 For v = 6: then D,®" = < s ) where A* has full row rank and corre-

sponds to the rows for derivatives with respect to (xh) heH -

Proof. Consider the space of utility functions (uh) € U, where u" satisfies as-

h
sumption 2. The space U is infinite-dimensional and 15 7(Le{mdowed with the C? uniform
convergence topology on compact sets. This means that a sequence of functions {u"}
converges uniformly to u iff {Du”}, {D?*u”}, and {D3u”} uniformly converge to Du,
D?u, and D3u, respectively. Additionally, any subspace of U is endowed with the
subspace topology of the topology of U. I will use the regularity result from lemma
1 to define utility functions as locally belonging to the finite-dimensional subset A C
Uu.

Using lemma 1, pick a regular value . For that &, there exist finitely many
equilibria (S’Z, 5) i=1,..,1. Further, there exist open sets ¥’ and A s.t. 7% € A",
the sets A" are disjoint across i, and Vo € Y/, 3! equilibrium z! € A”. Choose
A" such that the closure A’ is compact and there exist disjoint open sets A’ s.t.
At Ah c A

For each houschold, define a bump function §" : RY — [0,1] with I bumps as
6" =1 on A and 6" = 0 on (A")c. Now, I define u" in terms of a G x G symmetric
matrix A" as:

h(oh. ARy — (kY o Lcho b h  =h\T gh(.h _ =h
u(:B;A):u(:I:)+§5 (x)Z[(x — ) AN - 2] (10)

K3
3
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Thus, the space of symmetric matrices A" € A is a finite dimensional subspace of
U. Since A has the subspace topology of U, then u”(; AY) — ul(-; A) iff AV — A.
This can be seen by taking derivatives and noting that the function u stays fixed at
the regular value.

Taking derivatives with respect to 2" € A" yields:

D.u(z"; A" = Dau(z") + A" (2" — 20
D? ul'(z"; AM = D*u(a") + A"
Ais a G(G + 1)/2 dimensional space, so write A" as the vector

((A7)iz1.0 (AL icjimt,c1) -
Postmultiply D?, by Azy, :
D2 (2" A" Axy, = D*u(a") Axy + A" Ay,

Taking derivatives with respect to the parameter u”

atives with respect to A" :

is equivalent to taking deriv-

D, (Dfmuh(ajh; Ah)Axh) =Dy (AhAa;h)

Ax}b 0 0
— o ... 0 (1) ... X(G-1) c REC(G+1)/2
0 0 Amf

where the submatrix ¥(i) is defined as

0 € Ri-1.G—i
Azt Ax§
(i) = Azl 0 0 € REC,
0 .. 0
0 0 Az

Thus, since Az, # 0 (without loss of generality Az; # 0), then
rankD 4 (D2 u"(a"; A")Azy) = G. (11)

Out of all the rows ¥7, the utility function u" only appears in the row for deriv-
atives with respect to 2. This row in U7 for one household h is given by (as in
(8.a)): A

U(&€) FOCx BC FOCn MCx MCn
(Duh(xh))T D2>uh(z") —PT 0 —AT 0

Thus, taking the derivative D 4»® = D4 ¥Tv, the only nonzero element is

D 4n ((Duh(xh))T Auy, + D*u" (2" Az, — PTAN, — ATAp)
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= D n <(Duh(mh;Ah))TAuh> + D an (D" (2" AM)Azy,) .

From the construction of A" D,u"(x"; A") = Du(z") + A"(z" — zh) = Du(a") for
—
v = 0 (since 2" = z!). Thus Dyn(Dyu(z"; A")Auy) = 0. Using (11), then

D n (D2, uP(z"; AM)Axy,) is a full rank matrix of size G x (G(G —1)/2). Thus A* =

0 0
0 Dan (D2 u"(z"; A)Axy) 0| has full row rank. =
0 0

Consider the space of transaction costs mappings for all households (Fh) her - BY
definition, F" (Gh) => i f;‘ (Hh) depends on the endogenous asset prices. In
equilibrium, ¢ >> 0 and all the results follow by letting the asset prices (qj)vj be
fixed at some strictly positive values.

H
_ 0

Claim 8 Forv= 0 and if An, #0 Yh € H, then Dp®" = | B* | where B* has
ﬁ

0

full row rank and corresponds to the rows for derivatives with respect to (nh)h oH -

Proof. Consider the space of functions (F") ney € F, where F" (0") = >4 17 (6")
as in section 2 and f]h satisfies assumption 4. The space F is infinite-dimensional
and is endowed with the C? uniform convergence topology on compact sets (same as
U). I will use the regularity result from lemma 1 to define utility functions as locally
belonging to the finite-dimensional subset B C F.

Exactly as with utility functions, I define F” in terms of a J x J symmetric matrix
B" as:

Fh(0h BY) = F(0") + %5’%9’3 S @ —ayrBrer -] (12)

7

Thus, the space of symmetric matrices B" € B is a finite dimensional subspace of
B.

Taking derivatives with respect to 6" yields:

DoF™6";B") = DF(6")+ B"(6" —0])
DZF"9", B" = D*F(0") + B".

Recall the analysis in the proof of claim 5, namely equation (7) :
—2
h h h h (ph
> Ns) - DG (") = =N"O)D*F" (") | D" (9")] (7)

Thus, I replace D2EF" (") by D*EF(0") + B" and post-multiply both sides of (7) by
An,, to yield:

> A(s) - DG (") Ay = =X"(0) (D2F(") + B") | D" (6)] = A,

18



Taking derivatives with respect to the parameter F” is equivalent to taking deriv-
atives with respect to B" :

Dp (—Ah(()) (D*F(6") + B") [D ik (eh)}2 Anh> -

Ani 0 0

_ —2
= —\"(0) [th (eh)} 0 ... 0 (1) ... X(J-1) c RIMUHD/2
0 0 Anf
where the submatrix ¥ (i) is defined as
0 € Ri-LJ-i
Anitt L Anf
%(1) = Amj, 0 0 € RM,
0 0
0 0 An

- -2
With )\h(()) > 0 and [D fr (Gh)] a full rank matrix, I only need to verify that

Ant 0 0
0o .. 0 ¥(1) ... ¥(J—1) | has full rank. If An, # 0 (without loss
0 0 An]
of generality An; # 0), then

rankDgn (Zs>0 N'(s) - D*GI (n") Anh> =J. (13)

As the above development with utilities u” reveals, although the function ¢g" ap-

pears in both rows for derivatives with respect to A" and n" (see equations (8.b) and
(8.¢)), the only nonzero derivatives D (¥7v) are those due to the second derivative
S0 N'(8)-D2G" () in (8.c). Using (13) and if Anj, # 0, then the J x (J(J — 1)/2)
matrix Dpn (3,0 A"(s) - D*G" (n") An,) has full rank. Thus, if An, # 0 Vh € H,
0 0
then B* = | 0 Dpn (X ,ooN'(s) - D*G" (") Amy,) 0| has full row rank. =
0 0

T
The matrix ( ( \fT ) Dy®" Dpd’ ) is given below (where the rows corre-

spond to the equilibrium variables ((azh, MY ners p, q) , policy variables (), and
vector vT in that order). To conserve on space, I will employ the following conven-
tions:

Al AL 0 0
¢ (AM) = o e (AM) = (AU L AF), d(Ah) = 0 . 0

where (c, r, d) stand for column, row, and diagonal, respectively. Further, define Q" =

( YD;}?(?]h) > ) 2 = (717"77J) (]J - Dgh(ﬁh)) ) DZQh = zs>0 /\h(s) : D2G? (Uh) )
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Al = Dy (D*u(z")Azy,) , and finally B" = Dp (3o AN (s) - D2Gh (") Any,) .
T
The matrix < ( \fT > Dp®" Dpd’ > is given by:

r (Dut(a™T) d(D*")  d(-P") 0 co(=A") 0 0
0 d(—P) 0 dQMy 0 0 0
0 0 d(@)) D 0 oI, c(EMT)
0 r(—A,) ok 0 0 0 0
0 0 r(=n"0) r(=A"0)I,) 0 0 0
0 0 T, 1, 0 0 T,

r(Auy,) r(Azl)  r(AN) r(An)) Ap" AdT Ab
where Ay is the (G — S — 1) x G matrix

(\"(0) Iy 0) 0 0
Ay = 0 0
0 0 (N"(S)I—1 0)

and submatrix () will not be considered in the analysis. The submatrix T is
the J x H(S + 1) matrix defined as the transpose of the derivative of the budget
constraints with respect to . The submatrix T5 is the J x H.J matrix defined as the
transpose of the derivative of (FOCn) with respect to 7. The submatrix T3 is the
J x 1 matrix defined as the transpose of the derivative of the budget balance equation
(BB) with respect to 7. It is defined as:

Tg - ZhEH ( g] (77 ))

Claim 9 The submatrices Y1 and Yo are given by Y1 = r (H\T{‘ . YT> and Yo =
r (T2h . Dgh(nh)) , respectively where TP and T2 are full-rank diagonal matrices.
— Shent;
Zhe?—t 9?_22heﬁ(9?>+ ‘
Vh € 'H (corollary 1), then —1 < a; <0 Vj.
Choose any household i € H. From the budget constraints and since

T?(S) = <(1 — fyj) Zh}fﬁ 9? —C Zhe:f J(re?) ) -rj(s) if 9? <0 and (14)
Poner0j =2 Lnen (05)

Proof. For simplicity, define o; = Since generically n? #0

hs) = (2 B (1 B ’Yj) D hen 9? =2 pen (9?)+
’ Zhe?—( ‘9? —2 ZheH (9?)+

then taking derivatives of > ri(s)gh (") = ) T;L(S)(g? with respect to v € R’
yields:

> -rj(s) if 9? >0,

—ay |07 O 0
0 0 YT
0 _O{J|9 |
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—on |0} 0 0

Define Tf" = 0 0 . Both terms are nonzero: «; < 0 Vj and
0 —Q ‘9 ‘
} ﬂ} > 0 Vj. The second 1nequahty follows from 7];1 # 0 Yy, Yh (corollary 1). Thus,

is a full-rank diagonal matrix.
From the (FOCT) and using the definition of r"(s) from (14), then taking the
derivatives of " _, A"(s)r"(s)Dg"(n") with respect to v € R’ yields:

0 0
0 (o 1{0) < 0} = aj - 1{05 > 0}) - g X'(5)r5(s) 0 | - Dg"(n").
0 0
0 0
Define 70 = | 0 (o - 1{9? <0} —ay- 1{9? >0}) - >0 (s)rj(s) 0 |. Both
0 0

terms (o - I{Qh <0} —aj- 1{9h > 0}) and 3, A"(s)r;(s) are nonzero (since a; <
0 V4, M'(s) > 0 Vs, and r; = (..,7;(s),..)" > 0). Thus, T} is a full-rank diagonal
matrix. m

I will consider two subcases:

Subcase A: Ant # 0Vh € H
T
I want to show that the matrix ( ( \ZT ) Dj® Dpd’ ) has full rank. From

claims 7 and 8 and since (Auh,ApT, AqT) # 0 Yh € H (claim 6), then the first,
second, and last row blocks are linearly independent from the others. Thus, the

T
matrix ( ( \ST ) D ® Dgpd’ ) has full row rank iff the submatrix

—-P 0 0 Qb0 o0
0 0 0 0 .. 0 0
0 0 —P 0 0 Qf
—Ay ... *% 0 0
T h
0 r(=n"10) r(=A"(0)I;) 0
0 T, T, T3
has full row rank. By the definition of Ag, the [H(S+ 1)+ G — (S+1)] x HG
—-P 0 0
submatrix 8 0 _OP is a full rank matrix. I have left to show that the
—A,
Ry h
matrix <7"(—77 [0) r(=X(0)1y) © ) has full rank. Since T; =17 <6>|T1h : YT)
1 T, T

(claim 9) for a full rank matrix 7T} and Y7 has full row rank, then the final row
is linearly independent. The matrix r (—)\h (0)1 J) has full rank, so the submatrix
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Ty T, Ts
subcase A.

r(=n"[0) r(=A"0)I,) ©
( 'l 7 ) is a full rank matrix. This concludes the proof under

Subcase B: Anl =0 for some h € H
Recall the system of equations (a subset of the equations v7 ¥ = 0):

Auy Dul(2") + AxT D>ul(2") — AN P — Ap"A = 0.  (8.a) (8)

T
—Azf PT + Anf ( YDghq(nh) ) =0. (8b)

Suppose i/ € ‘H such that Anl, = 0. Postmultiply (8.a) by Az and use (8.b) and
® to obtain:
Azl D2 (2" Az — ApTAAzy = 0.

The left term is strictly negative (by assumption 2). Thus Ap” # 0.
The matrix < ( ) D9 Dpd ) is given by:

r (Du(a™T) d (D) d(—P7) 0 o(—AT) 0 0 d(Ah)
0 d(—P) 0 Q" 0 0 0 0
0 0 a(@))  wb¢)  0 el (@) 0
0 r(—Ay) ok 0 0 0 0 0
0 0 r(=g"0) r(=A"0)I,) 0 0 0 0
0 0 T, T, 0 0 Ts 0

r(Auy) r(Azy) (AN r(An)) Apt AGE Ab 0

From claim 7 and since Ap” # 0, then the first and last row blocks are linearly

independent from the others. As in subcase A, it is known that the submatrix
—P 0 O

T
8 0 _OP is a full rank matrix. Thus, the matrix( <$T ) D49’ DB<I>’)
R\
has full rank iff the submatrix

I\T _

(Q ) 0 0 D2gl 0 0 _[J (El>T

0 91 - 0 B 0 : :

0 0 @, 0 0 D?g" I, (=T
(=n'10) .. (=n7|0) ()7 P T (7)) 0 0
— —

(0 |T11-YT> <O|T1H-YT> T} - Dg'(n') ... T3'-Dg"(n") 0 Ty
(15)
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has full row rank where T, Ty have been replaced using claim 9. By definition,

T
Q"' = < —a " ) . If the submatrix

Y'Dg"(n
(YDg' ()" 0 0 Iy
e R R R 1o
yT .. TH.YT 0
has full row rank, then since ( —A'(0)/, ... —A"(0)I, ) has full rank, the subma-

trix (15) would have full row rank.

Claim 10 The matriz M as defined in (16) has full row rank.

Proof. To verify full row rank of M, I will pre-multiply M by w’ = <<w£h> ,w5>
heH

and verify that w? M = 0 implies w! = 0.
Take any household h € H. The equations of w? M = 0 are given by:

WL (Y Dg"(n")" +wITh - YT =0.  (17.0) (17)

Do =0 (17.0)
Since (Y Dg"(n"))" = (Dgh(nh))TYT, then equation (17.a) becomes:
(w5 (Dg" ()" + I T ) YT =0,
With Y7 full row rank, then
S (D) 4T =0
wp = = (Dg" (")~ Thw, (18)

where equation (18) follows by taking transposes and noting that Dg"(n") is invertible
and T} is diagonal. This equation (18) holds Vi € H. From (17.b) :

>, (Dg" ") T, = 0. (19)
R —ar |07 0 0
By definition, (Dg"(n")) = Df (9") and T} = 0 0 with
0 —Q g }9 |

strictly positive diagonal terms. If f” is given by the canonical representatlon then
~h +h

Df (0" is a diagonal matrix with strictly positive diagonal terms. Thus, Df (")-TP

is a diagonal matrix with strictly positive terms and this holds Vh € ‘H. Adding up
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over all households, the matrix 3", _,, Df h(Qh) - TP is diagonal with strictly positive
terms. o

The matrix >, _,, Df (0") - T} has full rank under the canonical representation
for ( f h) heH - The transaction costs mappings that are used in the statement of the
theorem are those defined in lemma 2 as belonging to an open set around the canonical

representation. In this open set, >, ,, D f"(eh) - T} has full rank.

Therefore, >, 4, (Dgh(nh))fl - T} has full rank and so (19) implies that w., = 0.
From (18), w,n = 0 Vh € H. As w” = 0, the matrix M has full row rank. m
This concludes the proof under case I (both subcases).

Case II: Az} =0 for some h € H

I will show that over a generic subset of € = {(e")pe  : " >> 0}, the system
of equations (®, ®’) has no solution. Recall the system of equations (a subset of the
equations vT¥ = 0):

Auy Dul(z") + Azl D*ul(2") — AN P — Ap"A = 0.  (8.a) (8)

A)‘;{ ( YD;}?(nh) ) + Anf Zs>0 )‘h(s) ) DQG? (nh) + AqT =0. (8¢

Suppose b/ € H such that Az}, = 0. From (8.a) and ®, I obtain

Auy Du (2") — ANEP — ApTA = 0
Dul 2"y = NP = 0

which together imply that Ap” = 0 and AX], = Aup A", From (8.b), since Y Dg"(n")
has full column rank, then An!, = 0. From (8.c) and ®, after plugging in AN, =
Aup A" and AnT, = 0 to (8.c), then A¢g” = 0. For all other h # b/, postmulti-
ply Auy,Du”(z") by Azj, and use both first order conditions in ® and (8.b) to get
Auy Du (") Axy, = 0. Next, postmultiply (8.a) by Az, and use (8.b) and (8.c) (as
in the proof of claim 6) to arrive at

h( h h h( h
Ax} D*u"(a") Azy, = —Ant (Zs>0 N'(s) - D*GY (n )> Any,. 9)
In (9), the left hand side is strictly negative if Az;, # 0 and the right hand side is

nonnegative. Thus Azl = 0 Vh € H. From (8.b), since Y Dg"(n") has full column
rank, then Anl' =0 Vh € H.
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Thus Vh € H, AN = Aup\" and ((Auh,A)\Z)heH,Ab> are the only nonzero

elements of v. As such, the following is the equation from v7¥ = 0 corresponding
to derivatives with respect to p :

Sner AN (el (s) —aly ()" =0 Vs >0 (20)

where (e(LL(s) — :U(LL(S)> is the (L — 1)—dimensional vector of household negative

excess demand with the numeraire commodity excluded. For the analysis to hold at
this point, I must use the assumption that L > 2. Plugging in A)\f = Aup A" into
equation (20) and only considering the first physical commodity [ = 1 and the final
s > 0 states, I have

S er Aunh'(s) (eh(s) —al(s))" =0 Vs >0
or in matrix notation
M) (ef(1) = (1) oo M) (ef (1) — 2{'(1)) Ay

. . . ] =o.
M (S)(el(S) = a1(8)) .. M(S)(ef () —2f(5))) \ Aun

From lemma 3, generically on € = {(e")pc  : " >> 0}, Aup, =0 Vh € H. Thus
AN =0 Vh € H. The following is the equation from v"¥ = 0 corresponding to
derivatives with respect to -y :

D AN (T + Augy (T2)" + Ab (T5)" = 0.

Since AN, = ApT =0 Vh € ‘H and (T3)" has generic full row rank by corollary 1,
then Ab = 0. The entire vector v7 = 0, which cannot be since ® guarantees that
vTv/2 = 1. T conclude that generically case II is not possible. This completes the
proof of the theorem. g

4 Proofs of lemmas
Proof of Lemma 2

Proof. From lemma 1, take any endowment (eh) hep rom the generic subset of
E = {(e")hen : " >> 0}. Then, given the canonical representation for f”, the
resulting equilibrium variables will be regular values of . Define the parameters as
o= (éh,ﬂh, fh) Iy (where f* has the canonical representation). For that &, there

exist finitely many equilibria (51,5) t = 1,..,1 where EZ = ((i:?,ﬁ?)heH ,pi,cji> .
Implicit in lemma 1 is the result that there exists an open set ¥’ for all regular values

& and open sets =/ such that ¢, € =, Vi = 1,..,I. Further, the sets =/ are disjoint

across i and Vo € ¥/, 3! equilibrium ¢ € =,
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The parameters o = (eh, ul, f h) in the open set >’ will be composed of trans-

heH
action costs mappings ( fh)h .y in an open set around the canonical representation.

The mapping f"(0") = (07, ....0%) + (F1(0"), ..., f2(6")) is a function of the pa-

rameter f" and the equilibrium variables #". At &, then fh(éh) = (9]11, ...,@’}) +

< fh (éh), o f ?(@%) and equilibrium conditions imply that the mapping f” is invert-
ible (claim 3). The set of invertible matrices is open. Thus, for any parameters
o € ¥/, the mapping f* defined as f"(0") = (67,...,0") + (f1(0"), ..., f#(6")) will also
be invertible. m

Proof of Lemma 3

Proof To prove this, first define

A (et(1) —ai(1) e ATD)(e (1) — 2(1))
Z = : :

A(S)(el(S) = #1(8)) oo AT(S)(ef!(S) — 21 (S5))

I will show that generically on &£, the matrix

o De®ja(¢.0)=0
M' = D¢, Zw = D¢ 2w
wlw/2 -1 (0| w)
has full row rank. Since M’ has more rows than columns, if M’ has full row rank,
)
then the equations Zw = 0 will generically not hold. Thus, Z will
wlw/2 -1

generically have full column rank. To show that generically on &, the matrix M’ has
full row rank, I have to show that the extended matrix

De® 3 (¢,0)=0
M= M| D.Zw
0

has full row rank.

Since this proof is independent from the proof in the body, notation will be re-
peated. To show that M has full row rank, premultiply by the row vector u! =
(AzT, AN, AnT, ApT, Aq", Az",Aw) . The lemma is proved upon showing that

u? = 0. For convenience, the vector u’ is divided into the indicated subvectors
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which correspond sensibly with the following equations of Zw
wlw/2 -1

FOCx

BC

FOCn

MCx

MCn

Zw

wlw/2 — 1.

1rreeey

I shall list the equations of u? M = 0 in the order that is most convenient to obtain
u? = 0. At my disposal are ®(£,0) =0 and w # 0.
First, for the columns corresponding to derivatives with respect to 2" and e’ for
any h € 'H :
ArED?*u(z") — AN P — Ap"A — AZTAE = 0
AN P+ Ap"A + AZTAL = 0

where the matrices P and A are as defined previously and A% is the S x G matrix

(M@t T ) o 0
A =10 | 0
0 0 (N9 T )

By assumption 2, (Azf,AN)) = 0Vh € H, Api(s) =0 V(,s) ¢ {(1,1),...(1,9)},
and
Apy(s) + Az N'(s)w" =0 Vs > 0and Vh € H. (21)

Second, for the columns corresponding to derivatives with respect to n"* for any
h € H and q :

T hioy . M2k (o h T _
Any, Zs>0)\ (s)- D*GL (") + Aq 0 (22)
Per A (=X(0)) = 0.
From corollary 1, for a generic subset of &£, 77? # 0 Vj, Vh. By the definition of
n = fjh (0"), this implies that «9;-‘ # 0 Vj, Yh. For any h € H, from claim 5, the

matrix Y o A"(s)- D2G" (") is negative semidefinite. Moreover, from equation (7)
(recall the equation is given by

S NS DAGE (1) = N 0) D" (6 [D 01)] ), (7)

_ —2
if D2F" (6") [th (Hh)] is positive definite, then >, A"(s) - D*G" (") is neg-
ative definite. By definition, D?F" (Gh) is positive definite so long as 0;‘ # 0
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_ —2
Vj. Multiplication by [D fh (Gh)} preserves the positive definiteness (for open

sets of transaction costs mappings f* around the canonical representation). Thus,
S0 A (8) - D2G" (n") is negative definite.
Postmultiply the first equation of (22) by An,A"(0). The first term

A(0) AT (ZM Ni(s) - D*Gh (nh)) An, <0 (<0if Ap, #0) YheH

This is because the matrix >, A"(s) - D*G" (") is negative definite and A"(0) > 0.

The second term Ag” An, A"(0) will be equal to 0 when summed over all households.
The only way that

> hen /\h(O)Anf (Zs>0 )‘h(3> : DZGZ (Wh)> Any+ 2 hen AQTATIh/\h(O) =0
is if Anl' =0Vh e H .2 From (22), A¢" = 0.

Finally, for the columns corresponding to derivatives with respect to A" for any
he€Hand w:

AZTA) = 0 (23)
A7+ Aw (w) =
where A is the S x (S + 1) matrix
(e (1) — 27 (D))" 0 0
Ar=10 | 0 0
0 0 (ef(S) — 4 (9))w"

From (23), I obtain that
Az, (el (s) — 2"(s))w" =0 Vh € H and Vs > 0.

Generically (corollary 1), (ef(s) — z1(s)) # 0 Vs, Vh and since w # 0, then for some
h, (ef(s) — a(s))w" #0 Vs > 0. Thus Az, =0 Vs > 0. From (21), the remaining
terms of Ap” are equal to 0, namely Ap;(s) = 0 for s > 0. With w # 0, the scalar
Aw = 0 (from (23)). Thus u’ = 0 and the proof of lemma 3 is complete.g
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