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Abstract

In this paper I examine ε-equilibria of stationary dynamic economies with hetero-
geneous agents and possibly incomplete financial markets. I give a simple example to
show that even for arbitrarily small ε > 0 allocation and prices can be far away from
exact equilibrium allocations and prices. That is, errors in market clearing or individu-
als’ optimality conditions do not provide enough information to assess the quality of an
approximation. I derive a sufficient condition for an ε-equilibrium to be close to an exact
equilibrium. If the economic fundamentals are semi-algebraic, one can verify computa-
tionally whether this condition holds. The condition can be interpreted economically
as a robustness requirement on the set of ε-equilibria which form a neighborhood of the
computed approximation.

I illustrate the main result and the computational method using an infinite horizon
economy with overlapping generations and incomplete financial markets.
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1 Introduction

Given a numerically computed ε-equilibrium of a dynamic stochastic economy with het-
erogeneous agents, how can one verify whether this is a good approximation to an exact
competitive equilibrium? In this paper, I show that if economic fundamentals are semi-
algebraic, i.e. per period utility- and production-functions can be described by finitely
many polynomials (see e.g. Blume and Zame (1993) or Kubler and Schmedders (2009)),
one can validate numerically whether a computed ε-equilibrium provides a good approx-
imation to an exact equilibrium. The basic idea is as follows. One can create a set of
ε-equilibria by constructing a neighborhood around the computed approximation. Under
some regularity conditions explained in detail below, one can ensure that this set contains
an exact equilibrium by verifying that, if endogenous variables next period lie in the set,
the conditions necessary for competitive equilibrium imply that endogenous variables in the
current period must also lie in the set. I show that this verification can be done relatively
efficiently by using methods from polynomial optimization and that therefore the method
can be used for medium-sized dynamic stochastic models. While this is only a sufficient
condition for the computed approximation to be close to an exact equilibrium, I argue that
under an economically intuitive robustness requirement on the exact equilibrium it is also
necessary.

Applied researchers routinely compute ε-equilibria of dynamic stochastic economies al-
though almost nothing is known about the nature of exact equilibria in these models. For
dynamic models for which the solution can be characterized by a planner’s problem, Santos
and Vigo (1998) and Santos (2000) have developed sufficient conditions under which they
can give explicit error bounds both on policy functions and on allocations. Under these
conditions, error bounds on allocations can be derived from Euler equation residuals and
ε-equilibria are always close to exact equilibria. Unfortunately, however, these results do
not generalize to models with heterogeneous agents and incomplete markets or overlapping
generations. In these models, it is not known if recursive equilibria exist or if policies are
continuous functions of the state (see e.g. Kubler and Polemarchakis (2003)). Even if for
given prices each agent makes only a small error in his individual problem, it is possible
that the exact market clearing price is far from the computed approximation. The set of ε-
equilibria in these economies might therefore be very large and the computed approximation
might be nowhere close to an exact equilibrium. In Section 2, I construct a simple example
of a deterministic economy with overlapping generations where I find two approximate so-
lutions. I can show that one ε-equilibrium is close to an exact equilibrium while the other
ε-equilibrium which exhibits similar errors in market-clearing and optimality conditions is
far away from any exact solution.

So far, no sufficient conditions were known which allow the derivation of error bounds on
computed equilibrium prices and allocations in the models considered in this paper. Kubler
and Schmedders (2005) show that in these models, ε-equilibria can be interpreted as exact
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equilibria of close-by economies. Their paper does not make any statements about the set
of all ε-equilibria or how ε-equilibria are related to exact equilibria of the given stationary
economy. However, it suggests that if a competitive equilibrium is well-behaved (in a
sense to be made precise) perturbations of exogenous variables should not lead to large
perturbations in the equilibrium and if one considers the set of ε-equilibria that results
from such perturbations it should form a well-behaved neighborhood around the exact
equilibrium. In this paper, I build on this idea, I derive a simple condition that ensures
that a set of ε-equilibria contains an exact equilibrium and I argue that in well-behaved
cases a neighborhood of a computed ε-equilibrium which is close to an exact equilibrium
should satisfy this condition.

I define a set of ε-equilibria to be robust if it satisfies the following property. Suppose at
date T economic fundamentals are perturbed so that from T onwards the new competitive
equilibrium realizes in the ε-equilibrium set. Then robustness of this set requires that
up to date T the endogenous variables of the competitive equilibrium in which all agents
anticipate the changes at T also realize in the set. The main reason for introducing this
concept is that robustness ensures that an ε-equilibrium set contains an exact equilibrium
and that one can effectively check if a (semi-algebraic) ε-equilibrium set is robust. For semi-
algebraic economies, robust ε-equilibrium sets that are semi-algebraic exist for all ε > 0.
It is economically sensible to focus on competitive equilibria whose neighborhoods form
robust ε-equilibrium sets since otherwise small perturbations of fundamentals will lead to
large changes in the equilibrium.

While the theoretical analysis is conducted using abstract equilibrium sets, one has
to consider recursive ε-equilibria for the practical error analysis. Computational algo-
rithms typically use recursive methods to approximate equilibria numerically and for this
ε-equilibria are written as functions mapping the state of the economy into current endoge-
nous variables. If this is the case, one of course wants to verify that the computed recursive
ε-equilibrium is close to an exact equilibrium for all permissable values of the state. In
order to do so, I construct candidate robust ε-equilibrium sets by creating a strip around a
computed recursive ε-equilibrium. I show that one can verify that the ε-equilibrium set is
robust for all relevant initial values of the state by solving a polynomial optimization prob-
lem. While this is not a convex programming problem, there now exist algorithms which
find lower bounds on global minima of relatively large constrained polynomial problems
(see Laurent (2008) for an overview).

Throughout the paper, I take as given that a candidate approximate equilibrium has
been computed by some existing method and that this is described by a continuous (policy-)
function ρ̂ that is semi-algebraic. While the existence of a recursive exact equilibrium is in
general not guaranteed (Citanna and Siconolfi (2008) give conditions for generic existence
of recursive equilibria in economies with overlapping generations), recursive ε-equilibria
always exist. However, typically there is no guarantee that a recursive ε-equilibrium can
be described by continuous functions. This paper is is not about the computation of ε-
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equilibria (see Judd (1998) for detailed descriptions of algorithms for the computation of
equilibria in dynamic stochastic models) but asks how it can be verified that a recursive
ε-equilibrium is close to an exact equilibrium. Even if there is a recursive ε-equilibrium
with a continuous policy-function, it is not guaranteed that the construction of a candidate
robust ε-equilibrium set always works. However, I argue below that if this is not the case,
the economy is likely to be so ‘badly’behaved’ that it seems hopeless to derive accurate
numerical solutions at all.

As an example, I study a stochastic economy with overlapping generations which is a
generalization of Samuelson (1958) and Diamond (1965) to uncertainty. In many applica-
tions (e.g. Rios-Rull (1996) among many others) researchers routinely compute approximate
equilibria for versions of this model and find that low degree polynomials suffice for very
good approximations of policy-functions. This might strike one as surprising since it is
well known that in many dynamic economic models with overlapping generations the set of
competitive equilibria can be almost arbitrarily wild. In particular the issue of indetermi-
nacy of equilibria in deterministic olg models received a lot of attention and it is now well
understood that extremely restrictive assumptions are needed to guarantee local uniqueness
(see e.g. Kehoe and Levine (1990)). But this obviously says little about the existence (or
non-existence) of simple equilibria that can be approximated by low-degree polynomials
or by piece-wise polynomials. As Kehoe and Levine (1990) point out, in deterministic olg
models the fact that the equilibrium set is complicated does not necessarily imply anything
about the practical computation of equilibria.

In the literature on Markovian equilibria in stochastic games with continuous state-
space, it has been observed that for games arising from non-exponential discounting, there
exist very ill-behaved equilibria (see e.g. Krusell and Smith (2003)). Numerical work, on
the other hand, finds very well-behaved epsilon equilibria. However, there are almost no
proofs for existence of continuous or smooth consumption rules (i.e. well behaved equilibria)
(see Judd (2008) or Morris (2002) for some examples). In this paper, I focus on competitive
equilibria and the methods are not directly applicable to games. As Duffie et al. (1994)
point out, equilibrium in stochastic games fits into their general characterization of dynamic
equilibria (which is similar to the one I use in this paper) only if one focuses on correlated
equilibrium with publicly observed messages. It is subject to further research how the
methods can used to make statements about Markov-perfect equilibria in stochastic games.

The rest of the paper is organized as follows. In Section 2, I give a simple example to
illustrate the main points of the paper. In Section 3 I abstractly describe the economy,
define robust ε-equilibrium sets and prove the main theoretical result that relates robust
ε-equilibria to exact competitive equilibrium. Section 4 introduces recursive methods and
relates the theoretical result to polynomial optimization. I argue in this section that it can
be verified if a recursive ε-equilibrium is close to an exact equilibrium by solving a series
of constrained optimization problems. Section 5 applies the methods to examine simple
dynamic equilibria in stochastic models with overlapping generations.
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2 An example

To illustrate the main ideas I examine one of the simplest examples in which serious prob-
lems can arise. Consider an exchange economy with a single perishable commodity and
overlapping generations. Time extends from zero to infinity, t = 0, 1, . . .. At each t a repre-
sentative agent is born and lives for 3 periods. Each period individuals receive endowments
that depend on their age, ea being the endowment of an agent of age a = 1, . . . , 3. Utility
is time separable with the utility of an agent born at time t given by

Ut(c1, c2, c3) =
3∑

a=1

βa
c1−σ
a

1− σ
.

At each t agents can trade in a risk-free bond with price q(t). Let θa(t) denote the bond-
holding of an agent of age a at time t. At t = 0, the initial conditions of the economy are
determined by the bond-holding of the initially alive agents of ages a = 1, 2.

A competitive equilibrium is defined as usual by market clearing and agent optimal-
ity, that is, it is given by a sequence

(
q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
such that for each t,∑2

a=1 θa(t) = 0 and

(c1(t), . . . , c3(t+ 2), θ1(t), θ2(t+ 1)) ∈ arg maxc,θ Ut(c(t), . . . , c(t+ 2)) s.t.

c(t) = e1 − q(t)θ(t)
c(t+ 1) = e2 + θ(t)− q(t+ 1)θ(t+ 1)
c(t+ 2) = e3 + θ(t+ 1).

Since utility is concave and satisfies an Inada condition and agents are finitely lived the
first order conditions for agents’ optimality are necessary and sufficient. A competitive
equilibrium can therefore be described by first order conditions and market clearing. It
is useful to define z(t) to be the vector of all endogenous variables relevant at time t, i.e.
z(t) =

(
θ1(t− 1), q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
. Given initial conditions θ1(−1), a competitive

equilibrium can then be characterized as a sequence (z(t))∞t=0 with ca(t) ≥ 0 for all t and
all a = 1, 2, 3 that satisfies h(z(t), z(t+ 1)) = 0 for all t = 0, 1, ..., where

h(z(t), z(t+ 1)) =



−q(t) 1
c1(t)σ + β

c2(t+1)σ

−q(t) 1
c2(t)σ + β

c3(t+1)σ

c1(t)− e1 + q(t)θ1(t)
c2(t)− e2 − θ1(t− 1) + q(t)θ2(t)
c3(t)− e3 + θ1(t− 1)
θ1(t) + θ2(t)

(1)

The beginning-of period period wealth of the middle aged at time t is given by θ1(t−1), i.e.
the savings of the young in the last period. It is convenient to build market-clearing into
the definition of z and h and take the beginning of period wealth of the old to be −θ1(t−1).
Clearly in any competitive equilibrium the endogenous variables, z, can only take values in
the following set.
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K0 = R2 × R+ × R3
+ × R2 (2)

A competitive equilibrium is a steady state if there is a z̄ such that zt = z̄ for all t, i.e.
if there is a z̄ with h(z̄, z̄) = 0. There always exists at least one steady state in this example
(the situation will be quite different once uncertainty is introduced). Generally however,
one is interested in competitive equilibria for initial conditions which are not part of a
steady state. Ideally one would like to describe competitive equilibria for an entire interval
of initial conditions. In this case one needs a convenient method to numerically describe
or approximate the equilibrium. In this paper I assume throughout that the approximate
solution is in the form of a recursive ε-equilibrium. In this example the natural state space
Θ consists of beginning of period cash at hand of the middle aged and there are functions
approximate policy-functions that map the state, θ− ∈ Θ into current period consumptions,
savings and prices, ρ̂ : Θ→ R+ × R3

+ × R2. That is for each t, z(t) can be written as

z(t) =
(
θ1(t− 1), q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
= (θ1(t− 1), ρ̂(θ1(t− 1))

and satisfies for each t, ‖h(zt, zt+1)‖ < ε.

2.1 A numerical specification

For the concrete example suppose there is no discounting (β = 1), the coefficient of relative
risk aversion is given by σ = 3 and individual endowments are e1 = 1, e2 = 10.575 and
e3 = 0.5. Suppose one is interested in equilibria for initial conditions θ− = −6.

I turns out that for this specification there exist recursive ε -equilibria for which ρ̂ can
be written as a polynomial of degree 4. It is not clear if polynomials are always the right
choice in these economies as policies could be backward bending - however, for this example
(and all the ones consider in Section 5 below) it turns out fine. There are the following two
candidate solutions.

(i) The admissible state space is Θ = [−6, 0], approximate savings policy of the middle
aged is given by

ρ̂θ2(θ−) = 0.000433θ4
− + 0.00224θ3

− − 0.000585θ2
− + 0.0289θ− − 0.154

The bond price is given by

ρ̂q(θ−) = −0.0012θ4
− + 0.0382θ3

− + 1.35θ2
− + 14.9θ− + 52.7

(ii) The admissible state space is Θ = [−6,−5.4], the approximate savings policy (of the
middle aged) is given by the following polynomial

ρ̂θ2(θ−) = 0.245θ3
− + 4.54θ2

− + 28.7θ− + 55.4.

The bond price is given by

ρ̂q(θ−) = 0.0385θ3
− + 0.717θ2

− + 4.56θ− + 10.
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Figure 1 shows the approximate portfolio-policies for the two candidate solutions. Clearly
the two equilibria are quite different. Solution i) is inefficient, with very low consumption
of the old, Solution ii) is efficient with high consumption of the old.
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Figure 1

In this simple example, one can verify that there is something ’wrong’ with the second
approximate solution as the model has a unique steady state at around θ− = −0.15839. The
second solution seems to converge to an approximate steady state at around θ− = −5.44571
but all exact steady states in this model are characterized by a finite number of polynomial
equations and the methods in Kubler and Schmedders (2009) can be used to show that
there is a unique steady state in this economy. In fact, building on this, I show in Appendix
A of the paper, that there cannot be a competitive equilibrium anywhere close to candidate
solution ii), i.e. this ε-equilibrium cannot be part of an cyclical equilibrium either.

The question is how to determine which one of these candidate solutions provides a good
approximation to an exact equilibrium without knowing the steady states. As mentioned
above, in models with stochastic shocks, there are no steady-state equilibria and the quality
of an approximation has to be judged differently. The standard measure is relative errors
in Euler equations. That is, one can impose market clearing and the budget-constraints on
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the approximate equilibrium by computing consumptions from the budget constraints. The
only error is then in the Euler equations and it is useful (see Judd (1998)) to report the
maximum relative error

εr = max
t

{
max

(
β
c2(t+ 1)−σ

q(t)c1(t)−σ
− 1,

βc3(t+ 1)−σ

q(t)c2(t)−σ
− 1
)}

.

In both cases these errors turn out to be very small (in solution 2 the maximum error is
10−5, in solution 1 around 2×10−5) and therefore this criterion cannot discriminate between
the good approximation and the candidate solution that is far from any exact equilibrium.
In fact, it is clear from Santos (2000) that one can only infer from these errors how far away
agents choices are from optimal choices, given fixed prices. In this example both choices
and prices are approximate.

Another possibility would be to increase the precision and try to compute equilibria with
smaller errors, hoping that eventually the error for candidate solution 2 would not decrease
further. For this it is useful to use a back-ward time iteration scheme as the algorithm to
compute equilibrium. Define an approximate equilibrium set, Zε as the graph of the policy
function, i.e. Zε = graph(ρ̂), and define the backward operator as follows.

B(K0,Zε) = {z̄ ∈ K0 with θ̄− ∈ Θ : ∃z ∈ Zε, such that h(z̄, z) = 0}, (3)

where the set K0 is as in Equation (2). For a given set Zε this operator describes the
equilibrium values in the current period, given that the equilibrium in the next period is
described by ρ̂. Clearly if B(K0,Zε) = Zε, the function ρ̂ describes an exact recursive
equilibrium. The reason why this operator is defined on sets rather than functions will
become clear below.

One would hope that if one applies this operator repeatedly one converges to an exact
equilibrium, i.e. given an approximate equilibrium Zε0, if one takes Zεi = B(K0,Zεi−1),
i = 1, 2, ... then eventually Zεi will be close to some exact equilibrium set. However, it
might be far away from Zε0 and since determining the limit requires infinitely many exact
computations this is not a possible solution. However, what can be done is to verify that
if one starts with any approximate equilibrium in some neighborhood of the computed
approximation, the new (hopefully better) approximation stays in this neighborhood. If, in
addition, one can prove that Zεi is non-empty for all i, this suffices to prove that there is
an exact equilibrium in this neighborhood of the computed approximation. More formally,
define for a given δ > 0 the set

Z̃ε = {z = (θ−, q, c1, c2, c3, θ1, θ2) : θ− ∈ Θ, ‖(q, c1, c2, c3, θ1, θ2)− ρ̂(θ−)‖ < δ}.

If it is the case that
B(K0, Z̃ε) ⊂ Z̃ε, (4)

and if Zεi is non-empty for all i, then obviously Zεi has to remain in Z̃ε and this set should
contain an exact equilibrium. This is proven formally in Theorem 1 below (the only technical
complication is to ensure existence in the limit).
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Condition (4) is interesting because it can be verified by solving a constraint maximiza-
tion problem. It is equivalent to the statement that the optimal value of the following
problem is below δ.

max
ε,θ−∈Θ,η∈K0

(η − ρ̂(θ−))2 s.t.

h ((θ−, η), (θ1, ρ̂(θ1) + ε)) = 0
‖ε‖2 ≤ δ

I explain in detail in Section 4 below how good upper bounds can be obtained for this
problem using semi-definite programming and sum-of-squares relaxation. The key is to
write h(.) as a polynomial system. This requires the utility function to be semi-algebraic.
For the numerical example above, the function h as defined in Equation (1) is not polynomial
since because of the first two equations. However, for rational σ they can be easily rewritten
as polynomials.

To summarize, to check whether a computed solution is close to an exact equilibrium
one has to solve a global polynomial optimization problem and one has to prove that Zεi
are non-empty for all i. This procedure can be applied easily to candidate solution (i) to
prove that there exists an exact equilibrium with a neighborhood of 10−4 of the computed
approximation. In Section 5, I give a general proof that Zεi is non-empty which can be
applied to this case. I also revisit this example explain exactly how the computations are
done and explain why this method of verification must fail for candidate Solution (ii). In
Appendix A, I prove that there is no exact equilibrium close to this ε-equilibrium.

3 An abstract model

In order to formally present the main theoretical result, I first introduce a general stochastic
dynamic framework that fits both models with overlapping generations and models with
infinitely lived agents and incomplete markets. At this stage I do not assume that the
approximate equilibrium is recursive, since the main result is easiest to prove in a general
framework.

3.1 The Dynamic Economy

I consider a general abstract formulation of dynamic general equilibrium. Duffie et al. (1994)
use a similar framework (not assuming differentiability and semi-algebraic fundamentals,
as I do) and show in their paper that it encompasses general equilibrium models with
overlapping generations as well as models with infinitely lived agents. It will turn out that
most dynamic general equilibrium models used in applications fit the framework.

Time and uncertainty are represented by a countably infinite tree Σ. Each node of the
tree, σ ∈ Σ, is a finite history of shocks σ = st = (s0, s1, . . . , st) for a given initial shock
s0. The process of shocks (st) is assumed to be a Markov chain with finite support S. To
indicate that st

′
is a successor of st (or st itself), I write st

′ � st. The number of elements
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in S is S. The S × S transition matrix is denoted by π. By a slight abuse of notation, for
σ′ � σ, I write π(σ′|σ) to denote the conditional probability of σ′ given σ.

I consider dynamic economic models where an equilibrium can be characterized by a
system of semi-algebraic equalities and weak inequalities relating current-period exogenous
and endogenous variables to endogenous and exogenous variables one period ahead. Exam-
ples of such conditions are individuals’ Euler equations, firms’ first-order conditions, and
market-clearing equations for goods or financial assets.

A subset A ⊂ Rn is a semi-algebraic subset of Rn if it can be written as the finite union
and intersection of sets of the form {x ∈ Rn : g(x) > 0} or {x ∈ Rn : f(x) = 0} where f
and g are polynomials in x with coefficients in R, that is, f, g ∈ R[x]. Let A ⊂ Rn be a
semi-algebraic set. A function θ : A→ Rm is semi-algebraic if its graph {(x, y) ∈ A× Rm :
y = θ(x)} is a semi-algebraic subset of Rn+m. Blume and Zame (1993) and Kubler and
Schmedders (2009) discuss in detail the assumption of semi-algebraic fundamentals in finite
exchange economies.

Current period endogenous variables are denoted by z ∈ RM . I assume that the system
of inequalities characterizing equilibrium can be written as follows.

h(s̄, z̄, z1, . . . , zS) = 0, g(s̄, z̄) ≥ 0, (5)

where for each fixed s ∈ S, h and g are continuous semi-algebraic functions. The arguments
(s̄, z̄) denote the exogenous state and endogenous variables for the current period. The
vector zs ∈ RM denotes endogenous variables in the subsequent period in state s. This is
identical to the characterization in the example in Section 2, except that now one also has
to consider S possible exogenous shocks in the subsequent period and that I want to allow
for additional inequality constraints.

A competitive equilibrium is then a process (z(st)) such that for each st

h(st, z(st), z(st, 1), . . . , z(st, S)) = 0, g(st, z(st)) ≥ 0 (6)

As explained for the example in Section 2, it is useful to describe a competitive equilib-
rium not by infinite sequences but by a set that consists at least all elements of the sequence
but might also contain several equilibria at the same time.

Definition 1 An equilibrium set is a set Z = Z1 × . . .×ZS ⊂ RMS , such that for all s̄ ∈ S
and all z̄ ∈ Zs̄, g(s̄, z̄) ≥ 0 and there exist (z1, . . . , zS) ∈ Z such that

h(s̄, z̄, z1, . . . , zS) = 0.

Given the equilibrium equations (5), I define a backward operator to map variables
next period into variables in the current period that are consistent with the equilibrium
conditions. That is, given sets K0,K1, ...,KS ⊂ RM , I define for each s̄,

Bs̄(K0, (K1, . . . ,KS)) = {z̄ ∈ K0 : ∃zs ∈ Ks, s = 1, ..., S such that h(s̄, z̄, z1, . . . , zS) = 0,

g(s̄, z̄) ≥ 0}.
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Again, this is the same object as in the example in Section 2, except that it has to
be defined for all possible shocks. Very roughly speaking in the subsequent analysis this
operator will play a role similar to the role of the Bellman operator in dynamic programming.
The main difference is that it is defined on sets and not on functions.

3.2 Robust ε-equilibria

Given any ε ≥ 0, define an ε-equilibrium set to be a set Zε = Zε1 × . . . × ZεS ⊂ RMS , such
that for all s̄ ∈ S and all z̄ ∈ Zεs̄, g(s̄, z̄) ≥ 0 and there exist (z1, . . . , zS) ∈ Zε such that

‖h(s̄, z̄, z1, . . . , zS)‖ ≤ ε.

The following is an abstract definition of a robust ε-equilibrium set.

Definition 2 An ε-equilibrium set Zε ⊂ RMS is robust if it is closed and bounded and if for

all s̄ ∈ S,

Bs̄(RM , (Zε1, . . . ,ZεS)) ⊂ Zεs̄.

The definition requires that for all endogenous variables in the ε-equilibrium set which
could realize in the subsequent period, all variables in the current period that are consistent
with equilibrium must also lie in the set. I present a more intuitive economic interpretation
of the concept below after characterizing robust ε-equilibrium in terms of exact equilibrium.
The following lemma provides the theoretical foundation for this.

Lemma 1 Suppose that there are (non-empty) closed and bounded set (K0
1 , ...,K

0
S) such that

if one defines recursively, for each s̄,

Ki
s̄ = Bs̄(K0

s̄ , (K
i−1
1 , . . . ,Ki−1

S ))

each Ki
s is non-empty and closed. Then there exists an equilibrium set with Zs ⊂ K0

s for all

s = 1, ..., S

Although the lemma follows directly from Duffie et al (1994) I give the proof for com-
pleteness - the proof also helps to understand the subsequent analysis.

Proof of the Lemma. The main step of the proof consists in showing, by induction,
that Ki

s ⊂ Ki−1
s for all i and all s. By definition K1

s ⊂ K0
s for all s. To show that if

Ki
s ⊂ Ki−1

s , it must be that also Ki+1
s ⊂ Ki

s, observe that if for a given s̄, z̄, there exist
zs ∈ Ki

s, s = 1, ..., S such that h(s̄, z̄, z1, ..., zS) = 0, g(s̄, z̄) ≥ 0 then, since Ki
s ⊂ Ki−1

s ,
there must also exist zs ∈ Ki−1

s , s = 1, . . . , S satisfying this property, and hence z̄ must lie
in Ki

s̄. Since the intersection of nested closed non-empty sets is non-empty, one can now
define for each s ∈ S, Zs = ∩∞i=0K

i
s. Clearly the collection of sets (Z1, . . . ,ZS) satisfy the

conditions of an equilibrium set. �
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The lemma states that if one has candidate equilibrium sets K0 and one can somehow
prove that the recursively defined Ki are non-empty for all i, then one can infer that each
K0
s in fact contains an equilibrium set Zs. If one takes K0 to be a robust ε equilibrium set,

in order to apply the lemma one still somehow needs to verify that each Ki is non-empty.
It is useful to do this via showing existence of truncated equilibria.

Definition 3 Given arbitrary sets (Z1, ..., ZS), Zs ⊂ RM , define a T -truncated equilibrium

with terminal condition (Z1, ..., ZS) as a finite horizon process (z(st))t≤T such that for each st,

t ≤ T − 1, the equilibrium conditions (6) hold and such that z(sT ) ∈ ZsT for all terminal sT .

The concept is closely related to the standard definition of equilibrium in truncated
economies. The only difference is that at the final period, T , agents face prices, consump-
tions and investments prescribed by Z and not as in the standard concept, zero asset prices
and no new trade. Showing existence of a T-truncated equilibrium with terminal condi-
tion turns out to be not much harder than showing existence of equilibria for truncated
economies (which is part of standard existence proofs in these models). A sufficient condi-
tion for existence is typically that each Zs contains a continuous function and that there are
constraints on trades which guarantee that it is never feasible to leave the specified state
space. I illustrate this with an example below.

If for an arbitrary ε-equilibrium set Zε, there exists a truncated equilibrium with termi-
nal condition Zε for all T , it is not guaranteed that the set contains an exact equilibrium
since it is not guaranteed that the truncated equilibria take values in Zε. However, if the
ε-equilibrium set is robust, it is clear by the definition that the truncated equilibria (if they
exist) must take values in the set. One can apply Lemma 1 and ensure that there must be
an exact equilibrium set contained in the ε-equilibrium set. The following theorem states
this formally.

Theorem 1 Suppose Zε constitutes a robust ε -equilibrium and that for each T there exists a

T -truncated equilibrium with terminal condition Zε. Then there exists an exact equilibrium set

Z with Zs ⊂ Zεs for each s ∈ S.

While the definition of robust ε-equilibrium makes no mention of an exact equilibrium
this theorem allows for the following interpretation of robust ε-equilibrium in terms of exact
equilibrium.

One typically hopes that competitive equilibria in infinite horizon models are good
approximations to equilibria in models with large finite horizons and that these equilibria
converge to the infinite equilibrium. In fact one hopes that changes in exogenous variables
in the far future have negligible effect on endogenous variables today. As Kubler and
Schmedders (2005) show, ε-equilibria can be interpreted as equilibria of a perturbed economy,
i.e. equilibria of an economy with slightly different endowments or preferences. Robustness
of an ε-equilibrium sets requires that no matter how exogenous variables in the future are
(locally) perturbed, as long as the new equilibrium realizes in the ε-equilibrium set, the effect
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on endogenous variables today must be no larger than the effect on endogenous variables
at the date of the perturbation.

Note that a reverse interpretation is not possible. If up to some T all endogenous
variables realize in any ε-equilibrium set, the only way that from T onwards all equilibrium
conditions hold exactly is that at the value of all endogenous variables at T , z(sT ) already
lies in an exact equilibrium set.

3.3 Verification and existence of robust ε-equilibria

The main advantage of the concept is that semi-algebraic robust ε-equilibria exist under
reasonable assumptions on the fundamentals and that (at least in principle) one can always
check numerically whether a given semi-algebraic set constitutes a robust ε-equilibrium.
This follows directly from the so-called Tarski-Seidenberg principle and the quantifier elim-
ination algorithm (see e.g. Bochnak et al. (1998, Chapter 5) for the Tarski-Seidenberg
principle and Basu et al. (2003) for computational issues). More precisely, there is an algo-
rithm that decides for a given semi-algebraic set of ε-equilibria if it is a robust ε-equilibrium
set1. If it is, it must contain an exact equilibrium. This raises the question if one should
expect robust ε-equilibrium sets to exist and to be semi-algebraic.

3.3.1 Existence of robust ε-equilibrium

Suppose from the economic model one can find a priori bounds on all endogenous equilibrium
variables (the example below shows this is usually not very difficult, these bound typically
come from non-negativity constraints in consumption, market-clearing etc.) Let K0 satisfy
these bounds and without loss of generality, impose the bounds in the equilibrium inequality
g(.) ≥ 0.

It is clear that if K0 is semi-algebraic the constructed Ki
s are semi-algebraic for all

i = 1, ... and each s. Fixing an ε > 0 there must now exist a sufficiently large i such that
Ki actually constitutes an ε-equilibrium set. By boundedness of K0, for each δ > 0 there
must be an i such that for all s, if z ∈ Ki

s there must be a z̃ ∈ Ki+1
s with ‖z − z̃‖ < δ.

For each ε there must be a δ so that if h(s̄, z̃, z1, . . . , zS) = 0 then ‖h(s̄, z, z1, . . . , zS)‖ ≤ ε

whenever ‖z − z̃‖ < δ.
The construction also implies that Ki is robust - if there existed some s̄, z̄ with z̄ ∈

Bs̄(RM , (Ki
1, . . . ,K

i
S)) but z̄ /∈ Ki

s̄, clearly by Lemma 1, we must have z̄ /∈ K0
s̄ . But this is

impossible because the inequality g(.) ≥ 0 imposes z̄ ∈ K0
s̄ by constructions.

Unfortunately, so far the analysis did not put enough structure on the equilibrium to
ensure that the ε-equilibrium set is actually small and Theorem 1 has some content. More
structure is also needed to develop efficient algorithms for verifying robustness of a candidate
robust ε-equilibrium set. Feng et al. (2009) develop a method to approximate an robust

1It is well known that quantifier elimination is hopelessly inefficient. I introduce more a more tractable

method for this below.
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ε-equilibrium set by discretization. It is subject to further research to determine if for a
given level of discretization it can actually be proven that their method produces a robust
ε-equilibrium set.

4 A recursive formulation

So far, the analysis was done for abstract (ε) equilibrium sets. However, while it is easy
to compute one ‘recursive’ approximate equilibrium, researchers typically do not explicitly
compute entire sets of equilibria. In this Section, I use the theoretical results above to show
that it is possible to verify that a recursive ε-equilibrium is close to an exact (not necessarily
recursive) competitive equilibrium.

For this, I need to impose a bit more structure on the abstract economy and define
a recursive ε-equilibrium. As in Section 2, I write the vector of endogenous variables as
z = (θ−, η), with θ− being the ‘endogenous state’. The relevant endogenous state space
Θ = (Θ1, . . . ,ΘS) with each Θs ⊂ RD depends on the underlying model and is determined
by the payoff-relevant pre-determined endogenous variables; that is, by variables sufficient
for the optimization of individuals at every date-event, given the prices. If Θ is the ‘en-
dogenous state space’ there must exist set-valued functions ρs : Θs ⇒ RM−D such each
Zs = graph(ρs) for all s ∈ S.

The function h(.) typically uniquely determines θ−s for each shock s, as a function of z̄.
In the simplest example, the beginning-of-period portfolio holding is the endogenous state
and this is equal to last period’s choices across agents. I illustrate this point in the next
section.

The value of the state variables s0 ∈ S,θ−(0) ∈ Θs0 in period 0 is called ‘initial condition’
and is part of the description of the economy. It will often be useful to make this explicit.
In particular I often want to require that an equilibrium set describes a family of equilibria
arising from different initial conditions in a set of θ−(0) that contains an open set. Through
this requirement, the state-space Θ is partly specified exogenously, but it is of course en-
dogenous in the sense it must contain all realizations of θ− that occur in equilibrium. In
some models with exogenous constraints on trades, Θ can be taken as exogenous since the
realizations of θ− are predetermined through these restrictions. This applies for example
in models with asset markets and short-sale constraints on these assets. For the purpose of
this section it will be useful to assume that there are sufficient constraints on trades that
ensure that in fact Θ is specified exogenously. I will give an example below where this is
not the case and show that it is without loss of generality to assume that in fact agents face
trading constraints that are never binding in equilibrium.

A recursive ε-equilibrium consists of sets Θ̂s, and functions ρ̂s : Θ̂s → RM−D, s ∈ S
such that if Zεs = graph(ρ̂s) for all s ∈ S, then Zε constitutes an ε-equilibrium set. Note
that the comment made about the exogeneity of Θ also applies to Θ̂. Again I will assume
that Θ̂ is given through the description of the economy and that therefore Θs = Θ̂s for all
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s ∈ S. From now I will also assume that ρ̂s is a continuous semi-algebraic function (which
implies that Θ̂s is a semi-algebraic set) for all s ∈ S.

It is easy to see that ρ̂s itself, since it is a function, will never describe a robust ε-
equilibrium set (unless it is an exact equilibrium). The first step is therefore to create a
function strip around ρ̂ that describes an entire set of ε-equilibria.

4.1 Constructing robust ε-equilibrium sets

For a given approximate recursive equilibrium (Θ̂s, ρ̂s)s∈S and fixed δ > 0, I take as a
candidate ε -equilibrium set

Zεs = {(θ−, η) : θ− ∈ Θ̂s, ‖η − ρ̂s(θ−)‖ ≤ δ}, s ∈ S. (7)

Note that the exact relation between δ and ε in this definition is not important for what
follows. What is important is that one would hope that if for sufficiently small δ, Zε

contains an exact competitive equilibrium, Zε should also be a robust ε-equilibrium set. At
this abstract level this is not entirely clear. This should certainly be trued if close to the
exact equilibrium the backward operator is monotone. In Section 5 I illustrate this point
in detail.

Given the analysis above, in order to verify robustness, one now needs to verify that for
all s ∈ S,

Bs(RM , (Zε1, . . . ,ZεS)) ⊂ Zεs.

However, this neglects the fact that one would like the recursive ε-equilibrium to be close to
an exact equilibrium for all θ− ∈ Θ̂s, s ∈ S. But since I assumed that Θ is given exogenously
through constraints on trades, it is without loss of generality to impose that the inequalities
h(.) ≥ 0 ensure that θ−s always realize in Θs. Therefore the definition of robust equilibrium
is now equivalent to the following, perhaps more intuitive concept. Define for each s ∈ S,
Ys = {z = (θ−, η) ∈ RM : θ− ∈ Θ̂s} and require for Zε that for each s ∈ S,

Bs(Ys, (Zε1, . . . ,ZεS)) ⊂ Zεs. (8)

In other words, if endogenous variables next period lie within some δ of ρ̂ all endogenous
variables this period must also lie within δ of ρ̂. Of course, Theorem 1 now needs to
be slightly modified and one needs to verify that truncated equilibria exist for all initial
conditions in Θ̂. The rest of the argument then remains the same.

If Zε is robust (and the conditions of Theorem 1 are satisfied) it must contain an exact
equilibrium, i.e. the computed approximation must be within δ of an exact equilibrium for
all values of the state. Note that these are absolute errors. Alternatively, we could have
defined

Zεs = {(θ−, η) : θ− ∈ Θ̂s,

∣∣∣∣max
i

ηi
ρ̂si(θ−)

− 1
∣∣∣∣ leδ}

to obtain relative errors. The exposition in this section is using absolute errors, while I will
use relative errors in some of the examples below.
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The advantage of working in a recursive framework is now that one can formulate
Condition (8) as a constrained optimization problem. Given a fixed δ > 0, I consider the
following constrained optimization problem for each s ∈ S,

maxθ−∈Θ̂s,ε,η
‖η − ρ̂(θ−)‖ s.t. ‖ε‖ ≤ δ

h (s, θ−, η, (θ−1, ρ̂1(θ−1) + ε1), . . . , (θ−S , ρ̂S(θ−S) + εS)) = 0
g(s, θ−, η) ≥ 0

(9)
It is easy to see that if the optimal value of this problem lies below δ the set Zε as

defined in (7) is a robust ε-equilibrium set.
Since the optimization problem (9) is not a convex programming problem one can gen-

erally not find the global maximum. However, in the semi-algebraic case, matters are
different. I assume that h,g and ρ̂ are continuous semi-algebraic functions and that Θ̂s are
closed semi-algebraic sets. It follows from Proposition 2.1.8. of Bochnak et al. (1998) that
there exist polynomials pi : A→ Rk and qi : A→ Rl, i = 1, ...,m, such that

h (s, θ−, η, (θ−1, ρ̂1(θ−1) + ε1), . . . , (θ−S , ρ̂S(θ−S) + εS)) = 0, g(s, θ−, η) ≥ 0

if and only if for some i = 1, ...,m,

pi (s, θ−, η, (θ−1, ρ̂1(θ−1) + ε1), . . . , (θ−S , ρ̂S(θ−S) + εS)) = 0, qi(s, θ−, η) ≥ 0.

Furthermore there exist polynomials ξi and ζi such that ρ̂(θ−) = η ⇔ ξi(θ, η) = 0, ζi(θ, η) ≥
0 for some i. Therefore one can solve the maximization problem (9) by solving a series of
polynomial optimization problems. See also Kubler and Schmedders (2009) for a detailed
description of this point in finite economies.

To simplify notation I will assume from now on that h, g and ρ̂ are already polynomial
functions. It will be the case in the applications below, that the equilibrium conditions can
directly be rewritten as polynomial functions and that ρ̂ is polynomial to start with.

4.2 Solving the maximization problem (9)

Under the assumption that the Kuhn-Tucker conditions are necessary and have finitely
many isolated solutions, algorithms designed to find all solutions to polynomial equations
(see Sturmfels (2002) for an overview) can be used to find all critical points and by comparing
them, one can find the globally optimal solution to the system (9). However, this ‘brute
force’ approach is extremely inefficient. For relatively small models where h consists of
around 4-5 equations of low degree, one can use computer-algebra systems to find the so-
called Gröbner basis for h(.). This is an equivalent system of polynomials which has a
simple triangular structure and solving the system of Kuhn-Tucker conditions using the
Gröbner basis often turns out to be much simpler. This approach has the advantage that
one does not need to worry about rounding errors and actually formally proves that an
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approximate equilibrium is close to an exact equilibrium. Unfortunately, it is only feasible
for small models and if ρ̂ itself is of very low degree.

For larger problems, it turns out to be advantageous to use semi-definite programming
and so called sum-of-squares relaxation to solve the polynomial optimization problem. In
the following I briefly explain the basic idea of the method.

4.2.1 Sum-of-squares relaxations

In the last decade big advances have been made in polynomial optimization - see Laurent
(2008) for an overview. The basic idea, (which is nicely explained in detail in e.g. Parrilo
(2003)), is as follows.

A polynomial p ∈ R[x] is said to be a sum of squares (of polynomials) if it can be written
as

p =
m∑
j=1

u2
j for some uj ∈ R[x].

Clearly, if for a polynomial p, there exists a number γ, such that p− γ is a sum of squares,
then γ is a lower bound for p(x) for any x.

If the degree of p is d, in order for it to be a sum of squares, there have to exist uj which
are of degree d/2. The main insight is now that one can use semi-definite programming to
search over all polynomials of degree d/2 to establish that p is the sum of squares. The
polynomial p can be written as a quadratic form of all the monomials of degree less than or
equal to d, i.e. let z =

[
1, x1, x2, ..., xn, x

2
1, x1x2, ..., x

d
n

]
be the vector of all such monomials.

Then there must exist a positive-definite matrix Q with

p(x) = zTQz.

This matrix can be found using semi-definite programming (see Parrilo (2003) for details).
Following the same idea, but slightly more complicated, now consider the constrained

optimization problem
min f(x) s.t

g1(x) = . . . = gm(x) = 0, h1(x) ≥ 0, . . . , hl(x) ≥ 0.

If there exist a number γ, arbitrary polynomials q1, ..., qm ∈ R[x] and sum-of-squares poly-
nomials r1, ..., rl ∈ R[x] such that

p := f − γ −
m∑
i=1

giqi −
l∑

i=1

hiri (10)

is a sum-of-squares, then clearly f(x) ≥ γ for all x satisfying g(x) = 0, h(x) ≥ 0. So again, γ
is a lower bound for the minimization problem. As before, given a candidate p, semi-definite
programming can be used to efficiently check if p is a sum-of-squares.
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It is quite complicated to derive conditions on g and h that ensure that the converse
holds, i.e. if γ solves the minimization problem, one can achieve the sum-of-square represen-
tation. The Positivstellensätze by Schmüdgen and by Putinar (see Laurent (2008, Theorem
3.16)) provide an answer. Basically, one needs to impose a condition a bit stronger than
compactness of the constrained set – it is beyond the scope of this paper to discuss this
further.

More important for this paper is the fact that it is not possible to find good bounds
on the degree of q and r and therefore on the degree of p in equation (10). While one
can still use semi-definite programming to determine for which γ the term in the equation
can be written as a sum of squares, one has no a priori-bound on the degree and therefore
has to experiment with different values. Fixing the maximal degree of the polynomial p,
semi-definite programming can be used to determine efficiently if polynomials q and r of
appropriate degree exist. Waki et al. (2006) provide a way to exploit sparseness in the
polynomial problem so that the method is applicable to interesting problems. They report
solving (sparse) problems with several hundred variables.

In Section 5 below, I use a matlab implementation by the authors called SparsePOP,
described in Waki et al. (2008) to solve the relatively small problems that arise from the
applications. The package produces a lower bound for the problem, γ, from the solution
of the semi-definite program, as well as an approximate solution (the minimizer) to the
polynomial problem. If these values coincide a true minimum has been found. If γ is
smaller than the value of f at the approximate solution, γ is still a lower bound for the
problem but neither γ nor the value of f might be the true minimum.

It is important to understand that one cannot always guarantee that the algorithm finds
the global minimum. There are essentially two reasons for this. First, it turns out that
solving the resulting semi-definite program is a difficult numerical problem and the solver
might fail to find a solution (see Waki et al. (2006) for a extensive discussion of this problem
and some possible remedies). More importantly, to use SparsePOP one needs to specify the
degree of relaxation (the parameter ’param.relaxOrder’ ), which is a bound on d/2 where
d is the degree of the polynomial p in Equation (10). As explained above, one cannot say
a priori how large this should be. In the examples below I try the values 3, 4, and for the
deterministic example the values 5 and 6. Large values generally lead to severe numerical
problems. Obviously, even if there exist γ and polynomials r and u such that p can be
written as the sum of squares, it is not guaranteed that it will be of degree 8 or less. One
should therefore expect the algorithm to fail in some cases.

However, the output of the algorithm is always a lower bound on the true value of the
minimization problem. For my purposes, it is irrelevant what the true value of the problem
is. In order to determine if the error set E is empty for a given δ one actually does not have
to solve the maximization problem (9). It suffices, that that δ provides an upper bound
for the problem. So if the software package finds a γ < δ for which the problem can be
written as a sum-of-squares, existence of a robust equilibrium within δ of the candidate
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equilibrium is proven. If the software package does not find such a γ, nothing can be said
about robustness of the candidate solution.

Note that this is a numerical algorithm, i.e. an approximate numerical solution is com-
puted via floating point arithmetic and rounding errors could potentially lead to problems.
Peyrl and Parrilo (2008) develop an algorithm that computes an exact algebraic solution if
coefficients are rational.

4.2.2 Practical Considerations

As I will explain in the next section, it is important to formulate the optimization problem
so that the degree of the polynomials is relatively low and it is important to find good
bounds on the variables. For many interesting economic applications this might not always
be possible and it might not be feasible to use existing implementations of these methods
for solving the polynomial optimization problem. From a practical perspective the insights
from this section are useful nevertheless. There are various efficient methods to find local
minima to the optimization problem (9) and while this obvious cannot lead to a guarantee
that the computed approximation is close to an exact equilibrium it can be a useful necessary
check. In particular, independently of the economy being semi-algebraic, the maximization
problem can be viewed as a programming problem with equilibrium constraints. There is a
large literature on these problems (see e.g. Luo et al. (1996)) and reliable software to solve
large-scale problems (see e.g. Su and Judd (2008) for an application of these methods to
economics).

Unfortunately, the optimal value of the optimization problem (9) lying below δ is only
a sufficient condition for an exact equilibrium lying in a δ-neighborhood of the recursive ε-
equilibrium. Nevertheless, it will become clear in the examples below that the maximization
problem can be modified in a way that if the optimal value is larger than δ, one can strongly
suspect that there is something wrong with the candidate solution.

5 Example: Stochastic overlapping generations

In this section, I illustrate the method using a simple stochastic olg economy. This is the
natural extension of the model considered in Section 2 to an environment with uncertainty,
Agents live for three periods, there is a single good, a single agent per generation and a
Markov chain determines endowments over the life cycle. For now, I assume that there is no
production – in Section 5.3 I discuss briefly additional complications that arise in a model
with capital accumulation. I assume that financial markets are incomplete2. The main
purpose of this section is to illustrate the theoretical results above. Clearly there a trade-off
between the model and notation being extremely simple and the model being interesting,

2In an earlier version of the paper I considered the case of complete markets. This makes the analysis

slightly easier. Results are similar and available upon request.
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i.e. somewhat realistic or similar to models used in other applications. I will therefore start
with a simple model and extend it later.

At each date-event a single individual commences his economic life; he lives for 3 periods.
An individual is identified by the date event of his birth, σ = (st). The age of an individual
is a = 1, 2, 3; he consumes and has endowments at all nodes st−1+a � st, a = 1, 2, 3. An
agent’s individual endowments are a function of the shock and his age alone, i.e. for all
a = 1, 2, 3, es

t
(st−1+a) = ea(st−1+a) for some function ea : S → R+.

The agent has an intertemporal time-separable expected utility function.

Uσ(c) =
3∑

a=1

∑
st−1+a�σ

π(st−1+a|σ)ua
(
c(st−1+a), st−1+a

)
The Bernoulli utility u depends on the age and the current shock alone.

At each st, there is a single risk-free bond in zero net supply available for trade. Its
price is denoted by q(st) ∈ R+ and agent σ’s bond-holding is θσ(st) ∈ R. Agents might face
a borrowing constraint of the form θσ(st) ≥ b, for some b < 0.

At the root node, s0, there are individuals of all ages s−1, s−2 with initial wealth
θs
−a

(s−1). These determine the ‘initial condition’ of the economy.
It will turn out to be useful to write ca(st) and θa(st) to denote consumption and

portfolios of the agent born at st−1+a.
A competitive equilibrium is a collection of prices and choices of individuals (q(st), (θa(st), ca(st))a=1,2,3)st∈Σ

such that markets clear and agents optimize, i.e. for all nodes st ∈ Σ the following holds:

• Market clearing:
3∑

a=1

θa(st) = 0

• For each st,individual σ = st maximizes utility:

(cσ, θσ) ∈ arg max
c≥0,θ

Uσ(c) s.t.

c(st)− e1(st) + q(st)θ(st) ≤ 0, θ(st) ≥ b

c(st+1)− e2(st+1) + q(st+1)θ(st+1)− θ(st) ≤ 0, θ(st+1) ≥ b

c(st+2)− e3(st+2)− θ(st+1) ≤ 0

for all st+1 � σ and all st+2 � st+1

Optimality conditions for initially alive agents, s−1 and s−2 are analogous.

As in the deterministic example in Section 2, the natural endogenous state space of
this economy consists of beginning of period bond-holdings of the middle aged. Define
c = (c1, c2, c3) to be consumption across agents alive in the current period and θ = (θ1, θ2)
to be new portfolio choices and κ = (κ1, κ2) ∈ R2

+ be the multipliers associated with the
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borrowing constraint, as well as θ− to be beginning of period wealth of the middle aged and
the old. Let z = (θ−, q, c, θ, κ) denote the vector of endogenous variables in a given period.

It is well known that under the assumption that Uh is differentiable, strictly increasing,
strictly quasi-concave and satisfies an Inada-condition, the first order conditions are neces-
sary and sufficient for agent optimality. As in Section 2, the equilibrium equations consist
of these first order conditions, budget equations, market-clearing and the equations that
determine cash-at-hand in the next period, given choices today.

In this example, the state space does not depend on the shock. Note that if b = −∞
and there are no constraints on trades, and the endogenous state space Θ is completely
endogenous. Therefore, the previous analysis has to be slightly modified. One can view a
recursive ε-equilibrium of an economy without constraints that is given by ρ̂s : Θ̂→ RM−D,
with Θ̂ as an ε-equilibrium of an economy where each agent faces the constraint θs ∈ Θ̂,
but the constraint is simply never binding. Through the error set, one then needs to verify
that this ε-equilibrium is close to an exact equilibrium with the same constraints in which
this constraints are also never binding. In practice I therefore check if a δ-strip around the
computed ε equilibrium is a robust ε-equilibrium set for the economy with constraints and
then show that in the exact equilibrium these constraints never bind.

As explained in the introduction, it is not difficult to show that competitive equilibrium
and policy-correspondences exist. In order to apply the main result of the paper, Theorem
2, one first needs to establish existence of truncated equilibria with terminal conditions. To
prove existence of competitive equilibria in these models, on typically first proves that an
equilibrium exists for all finitely truncated economies and then take the limit. The result
needed here is very similar.

5.1 Existence of truncated equilibrium

In this section, I prove that in the olg model truncated equilibria with initial conditions Z
always exist if the set Z contains the graph of a continuous policy function. Let ρ̂q denote
the approximate pricing function and ρ̂θ the approximate policy function of the middle
aged. Let Θ̂ ⊂ R be a closed interval for each s. Let c ≥ 0 denote a lower bound of an
agents’ consumption in any equilibrium. In the case where u(.) is continuous on R+ this is
zero, for cases where u(c)→ −∞ as c→ 0, this is some positive number determined by the
fact that endowments are strictly positive and agents are finitely lived.

As mentioned above, existence of a truncated equilibrium is shown for a slightly modified
economy where all agents face additional trading constraints of the form θ ≥ b. By market
clearing this implies b ≤ θ1 ≤ −b and one obtains a compact state space.

In this setup, it is relatively straightforward to prove the following lemma.

Lemma 2 Suppose ρ̂ is continuous and that for any s ∈ S and any θ− ∈ Θ̂, e2(s) + θ− −
ρ̂q(θ−, s) · ρ̂θ(θ−, s) > c. Then for all initial conditions s0, θ−(s0) ∈ Θ̂ and for any T , there

exists a T -truncated competitive equilibrium with terminal condition ρ̂.
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Although the proof of the lemma is a standard application of Kakutani’s theorem
(Kubler and Polemarchakis (2004) give a similar proof for the existence of truncated equi-
libria in olg models), I present an outline. The only difficulty lies in making assumptions
that ensure that agents’ budget sets are non-empty and to modify the problems of agents
alive at T − 1 and T .

Fix initial conditions s0, θ−(s0) ∈ Θ̂. Each agent in the T horizon economy who is not
active at T takes prices a given and a standard argument shows that his best response is
continuous for strictly positive prices. At each node st, t < T , there is a price player that
takes choices at the node as given and solves

max
(p,q)∈∆2

η

p(c1(st) + c2(st) + c3(st)) + q(θ1(st) + θ2(st)),

where ∆2
η denotes the two dimensional truncated simplex. His choices are upper-hemi

continuous and convex valued in choices of all agents.
Given choices of all agents, let Let q̄(sT ) = ρ̂q(θ1(sT−1)) and let θ̄(sT ) = ρ̂θ(θ1(sT−1)).

Clearly this is continuous and non-empty for all admissible choices of agents.
Finally, all agents born at period T − 1 at node sT−1, take as given q̄(sT ) and θ̄(sT ), as

well as prices at sT−2 and as sT−1. Their consumption at T is then e2(sT )+θ− q̄(sT ) · θ̄(sT ).
It is standard to show that their best responses are continuous and non-empty since it was
assumed that for some choices e2(sT ) + θ − q̄(sT ) · θ̄(sT ) > 0. Kakutani’s theorem ensures
the existence of a fixed point of the Cartesian product of the best-responses – it is standard
to show that for sufficiently small η > 0, this is a T-truncated equilibrium according to the
above definition.

The main insight of the proof is that if for a given T -horizon economy one can show
that agents choices are continuous in prices, and if one imposes a continuous policy function
at T which allow for positive consumption at some values of the state and if one imposes
constraints on trades that ensure that agents’ actions will never result in a state outside of
the specified space Θ̂.

5.2 Examples

As explained in the introduction, this is paper is not about how to compute approximate
equilibrium. For the simple model in this section, there are several reliable methods to do so.
I use the time-iteration algorithm which is explained in detail in Kubler and Krueger (2004)
for a model with overlapping generations and production. I first revisit the deterministic
example form Section 2, then consider the case without borrowing constraints, i.e. b = −∞,
and finally provide an example with a binding constraint. Throughout, I assume that for
each a and s, ua(c, s) = −βac1−σ, β > 0, i.e. preferences exhibit constant relative risk
aversion with a coefficient of relative risk aversion of σ > 1. Throughout, I take for each
s ∈ S, Θs to be the smallest interval that contains the initial condition and that is feasible
in the sense that in the self-validated equilibrium, choices at all nodes ensure that next
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period’s endogenous state is feasible, i.e. lies in the state-space. The initial condition is
part of the description of the economy.

5.2.1 Example 1: A deterministic economy

To fix ideas, it is useful to first reconsider the example from Section 2. Inspecting the
equilibrium equations (1) one notices that in order to solve the constrained maximization
problem (9) one does not need to know the entire policy function but in fact only the con-
sumption policies. It is therefore useful to approximate these separately, i.e. instead of
plugging the portfolio- and pricing functions into the budget constraints and so obtaining
an approximating polynomial for consumption, it makes more sense to approximate con-
sumption directly, solve the constrained maximization problem using only this function and
then ask what it implies for portfolios and prices. Concretely, for the two specifications it
turns out that consumption policies are actually better behaved then portfolios and can be
well approximated by polynomials of degree 3.

In order to verify that a candidate solution is close to an exact equilibrium one now
has to go through several steps: (1) Given a policy function of the middle aged, ρ̂c(.), the
constrained maximization problem to determine if this can be part of a robust ε-equilibrium
is as follows.

max
(ε),θ−∈Θ̂,q,θ

±(e2 + θ− + q · θ − ρ̂c(θ−)) s.t.

−q̃1/3(ε+ ρ̂c(θ)) + β1/3(e1 − q̃3θ) = 0,
−q̃1/3(e3 − θ) + β1/3(e2 + q̃3 · θ + θ−) = 0,
θ ∈ Θ̂, q ≥ 0, −δ ≤ ε ≤ δ,

(11)

where ± indicates that first the positive objective function is maximized and secondly the
negative objective function is maximized.

Note that it is useful to substitute in budget constraints and to write the system using
q̃ = q1/σ. In its original formulation, the system of constraint would contain the term
q(ε+ ρ̂c(θ))3 – with ρ̂c being a polynomial of degree 3 that would result in a polynomial of
degree 7 and potentially cause numerical problems. Note also that although in its original
formulation, the example did not include constraints on trades, I add the constraint θ ∈ Θ̂.
Since the polynomial function ρ̂c is defined on all of R, but only makes sense on Θ̂ this
cannot be avoided. For candidate solution (i) and δ = 10−4, SparsePOP returns an upper
bound of 4.3×10−5 for the problem. As a next step, (2), one has to check what a deviation
of 10−4 in the consumption policy implies for prices and portfolios. For this, one can use
SparsePOP to solve max(ε),θ−∈Θ̂,q,θ ±(θ− ρ̂θ(θ−)) and max(ε),θ−∈Θ̂,q,θ ±(q− ρ̂q(θ−)) subject
to the same constraints as above. For Solution (i) SparsePOP returns an upper bound of
3.2× 10−4. Finally, in step (3), one now has to verify that if portfolios stay in this region,
the additional superficial constraint θ ∈ Θ̂ never binds, i.e. in this case, for Solution (i), one
needs to check that for all θ− ∈ [−6, 0], ρ̂(θ−)−3.2×10−4 > −6 and ρ̂(θ−) + 3.2×10−4 > 0
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– which is the case.
In comparison, for Solution (ii), Steps (1) and (2) above also yield good results. However,

in this case, one obtains that the portfolio policy is within 10−2 of ρ̂(θ−) but that ρ̂(θ−)+10−2

lies outside of Θ̂. The method fails to verify that this approximate solution is close to an
exact equilibrium - as I show in Appendix A it is not.

5.2.2 Example 2: Endowment uncertainty

The introduction of uncertainty now causes additional numerical problems. If one continues
to use the consumption policy-function, for CRRA utility and an economy with S exogenous
shocks one has to solve s = 1, ..., S problems of the form

max
(ε1,...,εS),θ−∈Θ,q,θ

±(e1(s) + θ− + qθ − ρ̂c(θ−)) s.t.

−q 1
(e1(s)−qθ)σ +

∑S
s′=1 π(s′|s)β 1

(εs′+ρ̂c1 (θ,s′))σ = 0,

−q 1
(e2(s)+qθ+θ−)σ

+
∑S

s′=1 π(s′|s)β 1
(e3(s)−θ)σ = 0

q ≥ 0, θ ∈ Θ̂ and − δ ≤ εs′ ≤ δ, for all s′ ∈ S.

In this formulation, the equilibrium constraints are not polynomial but of course, if σ is
rational, one can obtain polynomial expressions by multiplying out. Unfortunately, even for
very simple examples with σ = 3 and 2 shocks, if the approximate consumption function is
cubic this leads to polynomials of degree 13. This is not feasible for SparsePOP. Instead, it
is useful to consider the functions

ρ̂m1(θ−) =

(
S∑

s′=1

π(s′|s)β 1
ρ̂c1(θ−, s′)σ

)− 1
σ

and

ρ̂m2(θ−) =

(
S∑

s′=1

π(s′|s)β 1
(e3
s′ − θ−)σ

)− 1
σ

.

In the examples below it turns out that these functions can be extremely well approximated
by low degree polynomials. With this, the equilibrium constraints of the maximization
problem can be trivially written as

−q̃ρ̂m1(θ) + (e1(s)− q̃σθ) = 0,

−q̃ρ̂m1(θ) + (e2(s) + q̃σθ + θ−) = 0.

With this, one has to work with relative errors, since maximal relative consumption errors
translate one-to-one to maximal relative errors in ρ̂m2 The problem can be solved easily for
interesting values of S and σ. Of course, with this one has to verify in addition that the
polynomial approximation ρ̂m1 is sufficiently good.
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To illustrate this, I consider a very simple numerical example. Suppose S = 2, shocks
are iid with π = 1/2, and endowments are given by

e0 = (e0(1), e0(2)) = (1, 2), e1 = (4, 2), e2 = (0.5, 0.5),

and suppose β = 1 and σ = 3.
It turns out in the computed approximate equilibrium, that the endogenous state can be

chosen to be Θ̂ = [−0.2,−0.05] and the approximate consumption functions can be chosen
to be the quadratic functions ρ̂c1(θ−, 1) = 1.6369 + 0.2350θ− − 0.0055θ2

− and ρ̂c1(θ−, 2) =
1.2187 + 0.3227θ− − 0.0362θ2

−. With these specifications, a cubic polynomial leads to an
excellent approximation and:

max
θ−∈[−0.2,−0.05]

∣∣∣∣∣∣ρ̂m1(θ−)−

(
S∑

s′=1

π(s′|s)β 1
ρ̂c1(θ−, s′)σ

)− 1
σ

∣∣∣∣∣∣ < 10−8.

With this in place, one can now repeat the steps from above and verify that there is an
exact equilibrium for which the approximation exhibits a relative error of less than 10−4.

The simple example illustrates the method - the technique can easily handle examples
with 6 or more states and risk aversion of 4 or 5.

5.2.3 Interpretation of robustness

Obviously, it is possible that a recursive ε-equilibrium is within some δ of an exact equilib-
rium but that a δ-neighborhood around the consumption functions does not form a robust
ε-equilibrium set. However, in the previous example it is easy to understand what this
implies for the economy. Here, the relative perturbations in next period’s consumption can
be interpreted as perturbations in the discount factor β. ...........

5.3 Extensions to production economies

In many applications in macro-economics researchers consider models with capital accumu-
lation. For example, stochastic versions of Diamond’s (1965) model are used for analysing
tax-policies and social security. Assume that there is a single firm that takes aggregate cap-
ital K and labor L as inputs and produces the consumption good according to the following
Cobb-Douglas production function

f(K,L; s) = ξ(s)KαL1−α +K(1− δ(s)) (12)

where ξ(.) is the stochastic shock to productivity and where δ(.) can be interpreted as the
(possibly) stochastic depreciation rate. Instead of having endowments in the consumption
good, households are now endowed with deterministic labor which they sell inelastically to
the firm at a stochastic wage. Instead of having access to a risk-free bond they can save
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and borrow in risky capital. With competitive factor markets, substituting for wages and
return to capital, budget constraints now read as

c(st)− (1− α)ξ(st)K(st)αe1 + θ(st) ≤ 0

c(st+1)− (1− α)ξ(st+1)K(st+1)αe2 + θ(st+1)− θ(st)(αξ(st+1)K(st+1)α−1 + (1− δ(st+1))) ≤ 0

c(st+2)− (1− α)ξ(st+2)K(st+2)αe3 − θ(st+1)(αξ(st+2)K(st+2)α−1 + (1− δ(st+2))) ≤ 0

for all st+1 � σ and all st+2 � st+1

with K(st) =
∑2

a=1 θa(s
t−1) and e1 + e2 + e3 = 1.

With this modified model, two additional complications arise. The natural endogenous
state space now consists of aggregate capital and the distribution of capital among the
middle aged and the old, i.e. it is two dimensional. Furthermore, the expressions for
returns to capital and wages have to be rewritten as polynomials. To be precise, suppose
for example that α = 1/3, ξ(1) = 0.85, ξ(2) = 1.15, δ(1) = δ(2) = 0.5, σ = 3, e1 = e2 = 0.4
and e3 = 0.2. The endogenous state now consists of the beginning of period capital holding
of the middle aged as well as aggregate capital. As in the exchange economy, it turns out
that a (complete) polynomial of degree 2 can be used to approximate consumption policies.
Similarly to above, define

ρ̂m1(θ−,K, s) =

(
S∑

s′=1

π(s′|s)β(αξ(s′)Kα−1 + (1− δ(s′))) 1
ρ̂c1(θ−, s′)σ

)− 1
σ

.

Using an polynomial of degree 2 suffices to approximate ρ̂m1 up to an error of 10−9. With
this, the constrained optimization problem is not much more difficult as the one above,
except that one has to define K̃ = Kα and use the additional equality constraint K̃3 = K.

Applying the above steps, one can prove that there is an exact equilibrium with con-
sumption policies within 10−4 of ρ̂c.

6 Conclusion

This paper develops a computationally feasible test to verify that a computed candidate
equilibrium is close to a competitive equilibrium of a dynamic stochastic economy. The
result has both practical and theoretical relevance.

In practice researchers often need to argue that their computation of dynamic equilibria
are accurate. The most consistent method is verifying that relative errors in Euler-equations
are small, but several other more ad-hoc methods are used in practice. The method in
this paper develops a method to compute the exact deviation between computed function
and actual equilibrium. The computation is relatively efficient and can be carried out for
interesting small problems. I also argue that the method suggests an error analysis that is
feasible for large-scale models.
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Theoretically, it has been known that the assumption of semi-algebraic preferences and
technology allows for an arbitrarily good approximation of all equilibria of a finite econ-
omy (see e.g. Kubler and Schmedders (2008)). The papers in the recent book edited by
Kubler and Brown (2008) explore other implications of semi-algebraic fundamentals in finite
economies. In this paper, I show how to extend the ideas from real algebraic geometry to
infinite economies.

Appendix

I show that there is no equilibrium close to the candidate Solution (ii). The method from
Kubler and Schmedders (2009) proves that there is a unique steady states which is associated
with candidate solution (i). To understand better the dynamics of the model it is useful to
identify the pairs of beginning of period bond-holding and consumption of the middle aged,
(θ−, c), which lead to constant portfolios and those that lead to constant consumption. If
portfolios are constant at some θ̄ = θ = θ− the budget constraint of the middle aged and
the first order condition imply as a necessary condition that there is a price q such that
qθ̄ = c − e2 − θ̄, qc−3 = (e3 − θ). Rewriting these equations as polynomials and using
Gröbner bases to eliminate q (as in Kubler and Schmedders (2009)) implies that constant
portfolios arise if (θ−, c) satisfy the following polynomial equation

320θ4
−+ (−320c+ 2904)θ3

−+ (480c− 4836)θ2
−+ (−320c3− 240c+ 2498)θ−+ (40c− 423) = 0.

If consumption remains constant there must be a θ and a q such that the budget con-
straint of the middle aged, and both first order conditions hold, i.e.

qθ = c− e2 − θ−, qc−3 = (e3 − θ), q(e0 + e1 + e2 − c− (e2 − θ−)−3 = c−3.

Rewriting as polynomials and using Gröbner bases to eliminate (q, θ) on obtains

256000c4 + (−384000θ− − 4252800)c3 + (128000θ2
− + 2771200θ− + 14927120)c2 +

(192000θ2
− + 4444800θ− + 25724280)c+ (−64000θ3

− − 2222400θ2
− − 25724280θ− − 99252847) = 0

These two polynomial equations define curves in (θ−, c) space and one determine the dy-
namics above and below these curves. Figure 2 shows the two curves, with θ− on the x-axis
and c on the y-axis in the region close to consumption of the second Candidate solution.

The arrows indicate the dynamics of c and θ. While it is not apparent from the figure
one can easily verify that the two curves do not intersect in this region. Therefore there
can be no equilibrium with consumption close to the one in candidate solution 2. Any such
(θ−, c) pair leads to a dynamical system that explodes in consumption - either consumption
of the middle aged or consumption of the old goes to −∞.
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