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Abstract

In this paper I analyze operational measure of riskiness defined by
Foster and Hart (2007). I give simple intuition behind their main result.
Then I extend the concept of riskiness measure in two respects - I define
a generalized riskiness measure based on decreasing absolute risk aversion
utility function. I derive necessary and sufficient conditions for existence
of such measure for DARA and CRRA class of utility functions. In addi-
tion, I show the way how to compare riskiness of gambles with negative
expectation or with nonnegative outcomes only. To this end I use proper-
ties of buying and selling price for a lottery and their relations to riskiness
measure. In particular, I show how buying and selling price for a lottery
concepts may be used complementary to the concept of riskiness measure.
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1 Introduction

In economics there is more consensus over how to define risk aversion than how

to define risk. Aumann and Serrano (2008) used this startling matter of fact

to define a concept of risk derived from risk aversion, i.e. risk is what risk

averters hate. This ingenious approach and nice axiomatic treatment led to

defining economic index of riskiness. Since it looked like the index was mea-

sured in dollars but there was no theoretical support for this claim at the time,

Dean Foster and Sergiu Hart started to work on giving the index operational

interpretation. This plan did not succeed but instead Foster and Hart (2007)

came up with another way to measure riskiness which bears a lot of similarity

to Aumann and Serrano (2008) index and has a nice operational interpretation.

They define measure of riskiness for a gamble as an amount of initial wealth

below which the decision maker should reject the gamble if he wishes to guar-

antee no-bankruptcy making consistent choices in the long run1. In this paper

I want to provide simple intuition behind Foster and Hart (2007) measure of

riskiness. In particular, I want to show why their result holds and which as-

sumptions are crucial for that. I will discuss assumptions behind the model,

in particular the assumption of homogeneous simple strategies. Simple strate-

gies are strategies whether to accept a given gamble or not taking into account

only current wealth level and the gamble in question. In a dynamic setting it

corresponds to Markov stationary strategy concept. Simple strategies are ho-

mogeneous if they are scale-invariant - the decision whether to accept a gamble

at a given wealth level should not change when both the gamble outcomes and

wealth level are rescaled by some positive factor. I will show that in the ex-

pected utility framework this assumption is equivalent to constant relative risk

aversion utility function representing the individual’s preferences. I will argue

that the assumption of scale-invariant simple strategies is crucial for the main

result of Foster and Hart (2007) even though the statement of alternative re-

sult without this assumption seems similar in mathematical terms. I will try to

show that the assumption of scale-invariant simple strategies makes the result

of Foster and Hart (2007) particularly strong by imposing strong consistency

requirements.

Another restriction of the model by Foster and Hart (2007) is necessary for

the existence of the riskiness measure. Gambles are assumed to have positive

expectation and negative outcomes with positive probability. To be precise this
1If this statement is not clear at this point, it will be clarified later on when the exact

formulation and the nature of the consistency requirements are outlined.
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assumption is not necessary for existence of the riskiness measure as the au-

thors argue that the riskiness measure can be extended so that all gambles with

non-positive expectation have riskiness equal to infinity and all gambles with

no losses get zero riskiness. However the fact is that only gambles satisfying the

assumption can be compared in terms of their riskiness and gambles which do

not satisfy this assumption cannot. This is to say that the assumption restricts

the set of gambles to those for which riskiness measure is meaningful. I want

to show the way to compare riskiness of the gambles which do not satisfy this

assumption. For this purpose I will link the concept of riskiness measure with

the concept of buying and selling price for a lottery as defined by Raiffa (1968).

I will analyze riskiness measure for gambles with prices. The advantage of this

approach is that the riskiness measure in this case is well defined even if it is

not well defined for gambles without prices. A couple of theoretical results will

make it clear in what sense measuring riskiness for gambles without prices can

sometimes be inferred from the riskiness measure for gambles with prices.

The riskiness measure of Foster and Hart (2007) can be linked to expected

utility maximization. It is rather straightforward to see from the definition2

that the riskiness measure of a gamble is equal to the value of initial wealth

for which the logarithmic utility maximizer is indifferent between taking the

lottery and not taking the lottery. Logarithmic utility function is a member of

constant relative risk aversion class of utility functions. I extend the definition

of the riskiness measure as follows - given some utility function and a gamble,

the riskiness measure is the value of wealth for which the decision maker whose

preferences are represented by this utility function is indifferent between taking

and not taking the gamble. For the case of decreasing absolute risk aversion and

the narrower case of constant relative risk aversion I show what are the neces-

sary and sufficient conditions for existence of such riskiness measure. Obviously

for functions other than logarithm it is not necessarily the case that the sim-

ple strategy corresponding to such utility function guarantees no-bankruptcy

so strictly speaking to allow other utility functions is not really an extension of

the riskiness measure by Foster and Hart (2007). However, it turns out that for

CRRA utility functions the extended riskiness measure is increasing in relative

risk aversion coefficient. It means that for utility functions with relative risk

aversion coefficient higher that 1 (the limiting case equivalent to logarithm),

the extended riskiness measure in fact guarantees no-bankruptcy. Since these

utility functions ”reject” more than logarithmic utility function, it is the case
2See equation (4).
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that the riskiness measure of Foster and Hart (2007) is the lowest and hence

least restrictive among all riskiness measures which guarantee no-bankruptcy.

This result appears already in Foster and Hart (2007) but in an implicit form

and therefore I state it in the paper explicitly.

This paper is organized as follows. In section 2 I introduce the model and its as-

sumptions and in particular I introduce the concepts of buying and selling price

for a lottery and the riskiness measure of Foster and Hart (2007). In section 3 I

show some intuition behind the riskiness measure. In section 4 I extend the def-

inition of the riskiness measure and give the necessary and sufficient conditions

for existence of such measure. In section 5 I show in what relation to each other

buying and selling price for a lottery and the extended riskiness measure are.

I also discuss how this relation can be helpful in comparing riskiness measures

of gambles that do not have positive expectation and negative outcomes. In

section 6 I demonstrate equivalence between expected utility decision making,

riskiness measure based decision making and buying/selling price based deci-

sion making. Finally, I conclude. Most of the results which I refer to in the

paper and which have been proved in another paper have been placed in the

appendix at the end.

2 The model

Below I define the class of utility functions and the space of lotteries which I

will focus on in this paper.

Assumption 1. Preferences obey expected utility axioms. Bernoulli utility

function U : R → R is twice continuously differentiable, strictly increasing

and strictly concave.

Definition 1. A lottery x is a real- and finite-valued random variable with finite

support. The space of all lotteries will be denoted X . I define the maximal loss

of lottery x as: min(x) = min supp(x).

The typical lottery will be denoted as x ≡ (x1, p1; ...;xn, pn), where xi ∈
R i ∈ {1, 2, ..., n} are outcomes and pi ∈ [0, 1] i ∈ {1, 2, ..., n} are the cor-

responding probabilities. Outcomes should be interpreted here as monetary

values. Although most of results that follow are true for more general lotter-

ies, the finite support assumption is sufficient for the purposes of this paper.

Now I define buying and selling price for a lottery given wealth level along the

lines of Raiffa (1968). To avoid repetitions, I will henceforth skip statements of
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the form: ”Given utility function U satisfying assumption 1, any lottery x and

wealth W ...”.

2.1 Buying and selling price for a lottery

Here and in the next sections I introduce the key concepts of the paper.

Definition 2. I define selling price and buying price for a lottery x at wealth

W as functions denoted, respectively, S(W,x) and B(W,x). Provided that they

exist, values of these functions will be determined by the following equations:

EU [W + x] = U [W + S(W,x)] (1)

EU [W + x−B(W,x)] = U(W ) (2)

If utility function is defined over the whole real line as is the case for constant

absolute risk aversion, buying and selling price as functions of wealth exists for

any wealth level by assumption 1. If the domain of utility function is restricted

to a part of real line as is the case of constant relative risk aversion utility

function analyzed here, the domain of buying and selling price for a lottery is

also restricted. I will focus mostly on the case of constant relative risk aversion

(CRRA) utility function normalized conveniently3 so that it takes the following

form:

Uα(x) =


x1−α−1

1−α , 0 < α < 1, x ≥ 0

log x, α = 1, x > 0
x1−α−1

1−α , 1 < α, x > 0

(3)

Observe that

lim
α→1

x1−α − 1
1− α

H

=
lim
α→1

− log x
−1

= log x

The proposition below establishes the domain and the range of selling and

buying price for a lottery if the utility function takes the above form. The

statement and the proof is due to Lewandowski (2009a).

Proposition 2.1 (CRRA2). Given the class of CRRA utility function used in

the section the following holds for any non-degenerate lottery x: for α ≥ 1

• limW→0B(W,x) = min(x)
3Normalization is done without loss of generality since cardinal utility function is unique

only up to affine transformation. That means that I can choose the slope and the shifting

constant in a given point without changing the Pratt (1964) risk attitudes characteristics.
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• limW→−min(x) S(W,x) = min(x)

Define WL(x) = U−1[EU(−min(x) + x)]. For 0 < α < 1

• limW→WL(x)B(W,x) = WL(x) + min(x),

• limW→−min(x) S(W,x) = WL(x) + min(x)

Additionally,

∀α > 0 lim
W→∞

B(W,x) = lim
W→∞

S(W,x) = E[x]

As for the intuition behind selling and buying price for the lottery, in eco-

nomic terms, given an individual with initial wealth W whose preferences are

represented by utility function U(·), S(W,x) is the minimal amount of money

which he demands for giving up lottery x. Similarly, B(W,x) is the maximal

amount of money which he is willing to pay in order to play lottery x.

Buying and selling price exhibit certain properties, many of which are enumer-

ated in the appendix. Proofs of these properties may be found in Lewandowski

(2009b). I will make use of these properties when I establish connections be-

tween buying and selling price and riskiness measure.

2.2 Riskiness measure

Foster and Hart (2007) define operational measure of riskiness as follows. The

initial wealth is W1 > 0. At every period t = 1, 2, ..., the decision maker

with wealth Wt is offered a gamble xt. He may accept or reject the gamble.

His wealth next period is Wt+1 = Wt + xt if he accepts and Wt+1 = Wt if

he rejects. Simple strategy of the decision maker whether to accept gamble

xt at time t or not is assumed to be stationary Markov strategy - it depends

only on the gamble xt and current wealth level Wt. Simple strategy is ho-

mogeneous or scale-invariant if ”accept x at W” implies ”accept λx at λW”,

for any λ > 0. For characterization results concerning simple strategies and

in particular homogeneous simple strategies consult Lewandowski (2009b). If

borrowing is not allowed, bankruptcy occurs when wealth converges to zero

as time goes to infinity. A given strategy s yields no-bankruptcy for the pro-

cess (xt)t=1,2,... and the initial wealth W1 if probability of bankruptcy is zero,

i.e. P [limt→∞Wt = 0] = 0. Strategy guarantees no-bankruptcy if it yields no-

bankruptcy for every process (xt)t=1,2,... and every initial wealth level W1. The

technical assumptions state that gambles are assumed to be finite-valued, with

finite support and such that E[x] > 0 and P[x < 0] > 0, where P[E] denotes a
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probability of an event E (positive expected value and losses are possible). The

stochastic process (xt)t=1,2,... is assumed to be finitely generated.

The main theorem of Foster and Hart (2007) states the following.

Theorem 1 (Foster and Hart (2007)). For every gamble x there exists a unique

real number RFH(x) > 0 such that: a homogeneous strategy s guarantees no-

bankruptcy if and only if for every gamble x and wealth W > 0,

W < RFH(x) ⇒ s rejects x at W

Moreover, RFH(x) satisfies the following equation

E
[
log
(

1 +
x

RFH(x)

)]
= 0 (4)

Foster and Hart (2007) call RFH(x) the measure of riskiness of x.

As I mentioned in the introduction, there is a link between the riskiness mea-

sure and expected utility maximizing individuals. Consider an expected-utility

maximizer with utility function U :

accept x at W ⇐⇒ EU(W + x) ≥ U(W ) (5)

Notice that for logarithmic utility function I can rewrite condition on the RHS

of (5) in relative - instead of absolute - terms, as follows:

E
[
log
(

1 +
x
W

)]
≥ 0

It is clear that the index RFH(x) has the property that the logarithmic utility

rejects x if W < RFH(x) and accepts x if W ≥ RFH(x). Hence by the theorem

above logarithmic utility represents a strategy that is among those which guar-

antee bankruptcy. In the next section I will provide further intuition behind

the riskiness measure and discuss assumptions underlying it.

3 Riskiness measure - its assumptions and intuition

behind

Notice that simple strategies in the theorem are assumed to be homogeneous.

It turns out as proved in Lewandowski (2009b) that in expected utility setting

homogeneous simple strategy is equivalent to utility function being of constant

relative risk aversion (CRRA) type. Within this class logarithmic utility func-

tion guarantees no bankruptcy as shown above. Even more is true as will be

shown in the next section - in CRRA class all utility functions with relative risk
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aversion coefficient α ≥ 1 guarantee no-bankruptcy. Logarithmic utility func-

tion is the least restrictive (rejects the least) among all CRRA utility functions

that guarantee no-bankruptcy4. To understand the intuition behind this re-

sult is quite simple. Suppose CRRA utility function is normalized conveniently

and it takes the form given in (3).Notice the following fact about this class of

functions:

lim
x→0

Uα(x) =

{
−∞ for α ≥ 1

A(α) > −∞ for 0 < α < 1

Within CRRA class, logarithmic function is a function with the smallest rela-

tive risk aversion among those which ”assign” −∞ index to bankruptcy x = 0.

Intuitively, if utility value for bankruptcy is finite as is the case for 0 < α < 1

then for any initial wealth W it is possible to construct a sequence of gambles

such that the decision maker who makes decisions represented by this utility

function goes bankrupt with positive probability. Consider a decision maker

whose decisions are represented by a CRRA utility function U(x) for which

limx→0 U(x) = A > −∞. Suppose his initial wealth level is W > 0. I con-

struct a gamble (−W,p,M, 1 − p), 1 > p > 0 (−W with probability p and M

with probability 1− p) such that pA+ (1− p)U
(
1 + M

W

)
≥ 0. It is possible to

construct such a gamble because CRRA utility function is unbounded above.

Hence the decision maker will accept this gamble at wealth level W . In one

step only the probability that this decision maker goes bankrupt (his wealth is

zero) is p > 0. As long as limx→0 U(x) = A > −∞, it is possible to construct

gambles that make an individual whose preferences are represented by U(x)

bankrupt in one step with positive probability.

The situation is different for α ≥ 1. Here limx→0 Uα(x) = − inf. An indi-

vidual with initial wealth W whose preferences are represented by such utility

function U will never accept a finite-valued gamble that makes him bankrupt

with positive probability. It follows that there does not exists a finite se-

quence of gambles that such individual would accept and which would make

him bankrupt with positive probability. What about the infinite sequence of

gambles? Here is a useful illustration: Suppose the decision maker has ini-

tial wealth W > 0 and his preferences can represented by logarithmic utility

function. Suppose further that he is offered an infinite sequence of multiplica-

tive gambles of the following form:
(

1
2 , ε; 2

ε
1−ε , 1− ε

)
, where ε > 0. Notice

first that the decision maker will be indifferent between accepting and reject-

ing such gamble: ε log 1
2 + (1 − ε) log 2

ε
1−ε = log 1. Assume that the gambles

4It is also independently shown in Foster and Hart (2007).
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in this infinite sequence are perfectly positively correlated.5 That means that

after accepting n such gambles the decision maker’s wealth may be written

as
(
W 1

2n , ε;W2n
ε

1−ε , 1− ε
)

. Let’s write the ”next” multiplicative gamble in

nominal terms:
(
−1

2W
1
2n , ε; +W2n

ε
1−ε , 1− ε

)
. Notice that as n goes to infinity

wealth tends to zero with positive probability ε. However, in order to achieve

this the gambles in the sequence become infinite valued: limn→∞W2n
ε

1−ε =∞
The above illustration shows that in case of logarithmic utility function 6,

one needs infinite-valued gambles so that accepting these gambles leads to

bankruptcy with positive probability and yet they are accepted.

It is worth noting that Foster and Hart (2007) have also another theorem in

which they relax the assumption of homogeneous simple strategies. It seems

however that this theorem is much weaker than the one with homogeneous sim-

ple strategies. It still says that to guarantee no-bankruptcy it is necessary to

reject gamble x at wealth level W if W < RFH(x). This time however it is re-

quired only if wealth is close to zero already. If wealth is higher other strategies

are sufficient such as: reject x at wealth W if W < min(x) + ε, for ε > 0 and

small.

Apart from homogeneity assumption, the riskiness measure is defined only for

gambles with positive expectation and possible losses. In the subsequent sec-

tions I will show a way to infer something about the riskiness of a gamble even

if the gamble does not allow losses or/and has non-positive expectation.

4 Extended riskiness measure

In this section I define an extended riskiness measure and analyze conditions

which are necessary and sufficient for existence of such measure. I discuss first

the more general case of decreasing absolute risk aversion and then I focus on

a subset of this, namely constant relative risk aversion.

4.1 Existence, uniqueness and no-bankruptcy for DARA

I focus on decreasing absolute risk aversion class of utility functions. Following

Yaari (1969) I define the acceptance set Ax ≡ {W : EU(W + x) > U(W )}
of wealth levels for which an individual with preferences represented by utility

function U facing the lottery x strictly prefers to accept this lottery. Dybvig

and Lippman (1983) proved the following result:
5For all other correlation the argument works even better.
6Actually, for all CRRA functions with α ≥ 1.
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Theorem 2 (Dybvig and Lippman (1983)). Let U be a strictly increasing con-

cave utility function with continuous second derivative. Then absolute risk aver-

sion A is decreasing if and only if for each gamble x, Ax is an interval of the

form (θx,+∞), where −∞ ≤ θx ≤ +∞.

The theorem is adjusted for the purposes of this paper. Define function

φ(W ) = EU(W + x) − U(W ). Below I present my proof of this result as it is

shorter and more straightforward than the original.

Proof. Notice that since U is continuous, function φ is continuous as well. Hence

exactly one of the three possibilities can occur:

• φ(W ) > 0, ∀W , in which case Ax = (−∞,+∞)

• φ(W ) < 0, ∀W , in which case Ax = (+∞,+∞)

• function φ crosses zero axis

In the last case I will show that function φ crosses zero axis exactly once.

Suppose function φ crosses zero axis at W ∗, i.e. φ(W ∗) = 0. From the definition

of selling price, it is clear that S(W ∗,x) = 0. Using the corollary 2 to Pratt

(1964) theorem which can be found in the appendix, since for DARA utility S

is increasing in W , it must be that for W > W ∗, S(W,x) > 0 and for W < W ∗,

S(W,x) < 0. And hence there can be exactly one such W ∗ for which function

φ crosses zero axis.

The theorem above makes it clear that DARA utility means that wealthier

people accept more gambles. It also shows that if there exists number W ∗ for

which φ(W ∗) = 0, it must necessarily be unique. Therefore, it makes sense to

define, whenever it exists, R(x) = W ∗ as an extended riskiness measure. There

are two conditions which are necessary for existence of an extended riskiness

measure for all functions which are concave and strictly increasing.

Proposition 4.1. For all utility functions which are concave and strictly in-

creasing and given a lottery x, the following are necessary conditions for exis-

tence of R(x):

a. E[x] > 0

b. P[x < 0] > 0

Proof. To see that these two are the necessary conditions for existence of an

extended riskiness measure, note that if E[x] ≤ 0, then by Jensen’s inequality
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U(R(x)) = EU(R(x) + x) < U [R(x) + E(x)] ≤ U(R(x)), which is a contra-

diction. If on the other hand losses are not possible and P[x < 0] = 0 then

φ(W ) > 0, ∀W so that R(x) does not exist.

Suppose now that the outcome space is restricted to strictly positive real

numbers, the intuition being that zero represents bankruptcy or the worst pos-

sible outcome. In this case the riskiness measure, if it exists, can take values in

the interval (L(x),+∞) , where L(x) is defined as the maximal loss of x and

is equal to −min(x). The following are the necessary and sufficient conditions

for the existence of an extended riskiness measure:

Proposition 4.2. Given DARA utility function U : (0,+∞)→ R and a lottery

x satisfying conditions a. and b. stated above, the necessary and sufficient

conditions for R(x) > L(x) to exist are:

• limW→L(x)+ φ(W ) < 0

• limW→+∞ φ(W ) ≥ 0

Proof. Notice first that due to condition b. above, L(x) > 0. Therefore expres-

sion limW→L(x)+ φ(W ) from the first condition above is well defined. Now let’s

write the definitions of selling price for two wealth levels W and V :

EU(V + x)− U [V + S(V,x)] = 0

EU(W + x)− U [W + S(W,x)] = 0

If V > W and utility is DARA then by corollary 2 to Pratt (1964) theorem I

have:

EU(V + x)− U [V + S(W,x)] > 0

EU(W + x)− U [W + S(V,x)] < 0

If R(x) = W then S(W,x) = 0 and φ(V ) > 0 and if R(x) = V , then S(V,x) = 0

and φ(W ) < 0. That means that R(x) > L(x) exists, if limW→L(x)+ φ(W ) < 0.

The second condition has to be satisfied due to the same reasons for which

the proof of theorem 2 is true. Since extended riskiness measure is unique

and function φ has to be increasing when evaluated at the extended riskiness

measure, the value of function φ at wealth going to infinity has to be not less

than zero.

The above two conditions which are both necessary and sufficient for exis-

tence of an extended riskiness measure are not very informative for the general
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case of decreasing absolute risk aversion. Therefore I will provide below a pair

of more informative conditions, the difference being that these conditions are

sufficient but not necessary for existence of an extended measure of riskiness:

• limx→0+ U(x) = −∞

• limx→+∞A(x) = 0

where A(x) is absolute risk aversion function evaluated at x. To see that these

conditions are sufficient for existence of an extended measure of riskiness, ob-

serve that if limx→0+ U(x) = −∞ and P[x < 0] > 0 then limW→L(x)+ φ(W ) =

−∞ due to the fact that lottery x is bounded-valued. Notice further that

limx→+∞A(x) = 0 means that the decision maker becomes risk neutral when

he gets extremely rich. Since expected value of the lottery is assumed to be

positive, E[x] > 0, therefore an extremely rich individual will accept this lottery

meaning that limW→+∞ φ(W ) ≥ 0.

It is worth noting that condition limx→0A(x) = +∞ is not sufficient to ensure

limW→L(x)+ φ(W ) < 0 and hence to ensure that an extended riskiness measure

exists. One needs stronger requirement of limx→0+ U(x) = −∞, which shall be

apparent in the next subsection where CRRA class of utility functions is ana-

lyzed. There are CRRA utility function, namely the ones for which relative risk

aversion α is smaller than certain cutoff α∗ such that limx→0A(x) = +∞ and

yet limW→L(x)+ φ(W ) > 0 meaning that an extended riskiness measure does

not exists. Observe however that in the next subsection it proves beneficial to

use variable 1
W instead of W so that the comparison of the two cases must be

done with caution.

Before I will proceed to the next subsection, I want to demonstrate that for a

certain class of DARA utility functions which are not necessarily CRRA, no-

bankruptcy is guaranteed. First I will need the following lemma, which is also

of interest for its own sake.

Without loss of generality7 assume that utility function U satisfies the follow-

ing: U(1) = 0 and U ′(1) = 1. Given such utility function U define relative

risk aversion function as RRA(x) = −U ′′(x)x
U ′(x) . For utility function which is de-

noted Ui I will use notation RRAi for the corresponding relative risk aversion

function. Then the following lemma is true.

Lemma 1. For some δ > 0, suppose that RRAi(y) > RRAj(y) for all y such

that |y| < δ. Then Ui(y) < Uj(y) whenever y 6= 1 and |y| < δ

7Cardinal utility function is unique only up to affine transformation.
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Proof. First, let me say that the proof is very similar to that used in lemma 2

of Aumann and Serrano (2008). They prove a similar proposition for absolute

risk aversion.

Let |y| < δ. If y > 1, then

logU ′i(y) = logU ′i(y)− logU ′i(1)

=
∫ y

1
[logU ′i(z)]

′dz

=
∫ y

1

U ′′i (z)
U ′i(z)

dz

= −
∫ y

1

RRAi(z)
z

dz

< −
∫ y

1

RRAj(z)
z

dz = logU ′j(y)

If 0 < y < 1, then

logU ′i(y) = logU ′i(y)− logU ′i(1)

= −
∫ 1

y
[logU ′i(z)]

′dz

= −
∫ 1

y

U ′′i (z)
U ′i(z)

dz

=
∫ 1

y

RRAi(z)
z

dz

>

∫ 1

y

RRAj(z)
z

dz = logU ′j(y)

Hence logU ′i(y) ≶ logU ′j(y), when y ≷ 1. It follows that U ′i(y) ≶ U ′j(y), when

y ≷ 1.

If y > 1, then

Ui(y) =
∫ y

1
U ′i(z)dz <

∫ y

1
U ′j(z)dz = Uj(y)

If 0 < y < 1, then

Ui(y) = −
∫ 1

y
U ′i(z)dz < −

∫ 1

y
U ′j(z)dz = Uj(y)

And hence the lemma is proved.

Equipped with lemma 1 I can now demonstrate for which DARA utility

functions in general the condition of no-bankruptcy is guaranteed.

Proposition 4.3. For all bounded-valued lotteries and for all DARA utility

functions for which RRA(x) ≥ 1, ∀x ∈ D, where RRA(x) is relative risk
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aversion function evaluated at x and D is the utility function’s domain, no-

bankruptcy is guaranteed.

Proof. No-bankruptcy is guaranteed for logarithmic utility function for which

relative risk aversion coefficient is equal to one. Take a DARA utility function

U for which relative risk aversion is not less than one for all arguments in

the domain of U . For any wealth level W I can normalize U without loss of

generality so that U(W ) = log(W ). By lemma 1, since RRA(y) ≥ 1 for all

finite y, it is true that U(y) ≤ log(y) and by normalization U(W ) = log(W ). It

follows that if logarithmic utility function ”rejects” a lottery x, utility U also

”rejects” this lottery. And hence it also guarantees no-bankruptcy.

4.2 Existence, uniqueness and no-bankruptcy for CRRA

I focus now on the CRRA function which is conveniently normalized8:

U(x, α) =

{
x1−α−1

1−α , for 1 6= α > 0

log x, for α = 1

where x ∈ [0,∞]. I want to define a measure R for lottery x for CRRA utility

function. This measure should satisfy the following condition:

1
1− α

E
(

1 +
x

R(x)

)1−α
− 1

1− α
= 0 (6)

for a given lottery x and coefficient α. I want to ensure that such measure is

well defined and unique. As already proved in the previous subsection measure

of riskiness is unique if it exists. The necessary conditions are already provided

in the former subsection and in particular, I will focus only on non-degenerate

n-dimensional lotteries x with bounded values9 such that P[x < 0] > 0 and

E(x) > 0. Furthermore, I will restrict attention only to wealth levels W , such

that W ≥ L(x) > 0. The fact that L(x) > 0 follows from the fact that x may

take negative values. Define lottery y = 1 + x
W . Notice that this lottery takes

only non-negative values. It takes the lowest value of zero for xi = −L(x) for

some i ∈ {1, ..., n}, since W ≥ L(x).

Notice that for the function form above, the following is true: U(1) = 0, U ′(y) =

y−α and U ′(1) = 1. Suppose there are two different CRRA utility functions

with relative risk aversion coefficients equal to αi and αj , respectively. Suppose

8See (3).
9The following condition holds: there exists δ > 0 such that |xi| < δ ∀i ∈ {1, ..., n}.

14



Extended riskiness measure Michal Lewandowski

further that αi > αj . Then from lemma 1 I know that U(y, αi) < U(y, αj), for

y ∈ [0, δ), some δ > 0 and y 6= 1. Hence,

1
1− αi

E
(

1 +
x

R(x)

)1−αi
− 1

1− αi

<
1

1− αj
E
(

1 +
x

R(x)

)1−αj
− 1

1− αj

Let’s define the following function:

φ(λ, α) =
1

1− α

n∑
i=1

pi[1 + λxi]1−α −
1

1− α
(7)

0 ≤ λ ≤ 1
L(x)

, xi ∈ [−L(x),+M(x)]

where M(x) is the maximal gain in x and L(x) is the maximal loss of x, both

assumed to be finite.

I want to find out whether this function has a unique λ > 0, for which this

function is equal to zero, given α, and whether it has a unique α for which the

function is equal to zero, given that λ = 1
L(x) . It turns out that the answer to

both questions is positive, as I will demonstrate below.

Lemma 2. The following properties characterize function φ:

φ(0, α) = 0

∂φ(λ, α)
∂λ

=
n∑
i=1

pi[xi(1 + λxi)−α]

∂φ(λ, α)
∂λ

∣∣∣∣
λ=0

=
n∑
i=1

xipi = E[x] > 0

∂2φ(λ, α)
∂2λ

= α
n∑
i=1

pix
2
i (1 + λxi)−α−1 < 0 for α > 0

lim
λ→ 1

L(x)

lim
α→1

φ(λ, α) = −∞

lim
λ→ 1

L(x)

φ(λ, 0) = lim
λ→ 1

L(x)

n∑
i=1

pi(1 + λxi)− 1 =
1

L(x)
E[x] > 0 (8)

Furthermore limλ→ 1
L(x)

φ(λ, α) is a continuous function of α and it is strictly

monotonic in α (see lemma 1). Therefore the following result holds:

Proposition 4.4. Given function φ(λ, α) and a random variable x with n

values denoted by xi for i = 1, ..., n, where E(x) > 0 and P[x < 0] > 0,

15
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the following is true. Denote L = L(x) and M = M(x).

∃!α∗ < 1 :


α < α∗ φ( 1

L , α) > 0

α = α∗ φ( 1
L , α) = 0

α > α∗ φ( 1
L , α) < 0

Furthermore, suppose I take α > α∗ and fix it. Then:

∃!λ∗ :


λ < λ∗ φ(λ, α) > 0

λ = λ∗ φ(λ, α) = 0

λ > λ∗ φ(λ, α) < 0

Proof. Follows from the above stated properties of a function φ (lemma 2).

The above proposition states that riskiness measure for CRRA is defined

for α ≥ α∗, where α∗ depends on a lottery. In this case the riskiness measure

is unique. For different α’s from the set of α’s satisfying α > α∗ I get different

λ∗, which is the inverse of the riskiness measure. Let’s define a function λ∗(α),

where α > α∗ and φ(λ∗(α), α) = 0. I have the following proposition:

Proposition 4.5. The function λ∗(α) is decreasing in α.

Proof. Suppose α1 > α2 and that α1 > α∗. Then

0 = φ(λ∗(α1), α1)

=
1

1− α1

n∑
i=1

pi(1 + λ∗(α1)xi)1−α1 − 1
1− α1

<
1

1− α2

n∑
i=1

pi(1 + λ∗(α1)xi)1−α2 − 1
1− α2

= φ(λ∗(α1), α2)

Hence:

φ(λ∗(α1), α2) > 0

φ(λ∗(α2), α2) = 0

Since φ(λ, α) is concave in λ and φ( 1
L , α) < 0, I conclude that λ∗(α2) > λ∗(α1).

The above proposition states that the higher is α, the relative risk aversion

coefficient, the higher is riskiness measure, which is the inverse of λ∗(α). It

confirms a conjecture that since rejecting for wealth being below riskiness mea-

sure based on α = 1 (Foster and Hart (2007) riskiness measure) guarantees no

bankruptcy, also rejecting for wealth below riskiness measure based on α > 1

16
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Figure 1: An extended riskiness measure for CRRA utility

guarantees no bankruptcy, as it means more rejection. To illustrate the above

propositions and clarify the meaning of the different concepts and variables,

look at the graph below:

This graph depicts the shape of φ(λ, α) function for different values of relative

risk aversion α within the CRRA class of utility functions. For α between 0

and α∗ an extended riskiness measure is not defined since in this case function

φ does not cross the zero axis. An extended riskiness measure is defined if

α ≥ α∗. Furthermore, it is also clear from the picture that an extended riski-

ness measure for values of α greater than 1 is necessarily greater than RFH(x)

and hence rejecting x at wealth smaller than the extended riskiness measure in

this case also guarantees no-bankruptcy.

5 Relation between riskiness measure and buying

and selling price for a lottery

This section provides a link between the concepts of buying and selling price

for a lottery and riskiness measure. The first lemma below demonstrates that

although the riskiness measure for gambles with negative expectation or gam-

bles without losses is not meaningful, it becomes meaningful and well defined

if buying price or selling price for such gamble is subtracted from this gamble.

17
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Lemma 3. Given a non-degenerate lottery x and wealth level W , such that

B(W,x) and S(W,x) exist, both R(x− B(W,x)) and R(x− S(W,x)) are well

defined.

Proof. I have to prove that R(x − S(W,x)) and R(x − B(W,x)) exist for any

lottery x. Notice that by proposition 4.4, the riskiness measure R(x) exists for

a lottery x and α ∈ [α∗,+∞) if and only if E(x) > 0 and P[x < 0] > 0. I have

to check these two conditions for lotteries x−S(W,x) and x−B(W,x). Notice

that for an arbitrary lottery x, the following holds by proposition 7.1:

E[x−B(W,x)] > 0

E[x− S(W,x)] > 0

Notice further that by proposition 7.1, −L(x) < B(W,x) and −L(x) < S(W,x).

Since all the values in the support of x get positive probability

P[x−B(W,x) < 0] > 0

P[x− S(W,x) < 0] > 0

Hence the two necessary conditions for R(x− S(W,x)) and R(x−B(W,x)) to

exists are satisfied. For α ≥ 1 these conditions are also sufficient for existence

of such measures by proposition 4.4. For 0 < α < 1, the following is true by

proposition 2.110:

lim
W→WL(x)

B(W,x) = WL(x) + min(x)

lim
W→−min(x)

S(W,x) = WL(x) + min(x)

where WL(x) = U−1[EU(−min(x) + x)].

Hence WL(x) + min(x) is the minimal value for B and S when 0 < α < 1. By

definition of WL(x), the following holds:

WL(x) = R(x− (WLx + min(x)))

So the riskiness measure for x− S and x−B for the lowest possible value of S

and B (which is equal) is well defined and its value is WL(x). For higher values

of S and B approaching (but not reaching) E[x] the riskiness measure is well

defined by proposition 4.4 and its value increases.

The opposite direction of the above lemma is as follows:
10Notice that L(x) used in proposition 4.4 is the same as −min(x) used in proposition 2.1
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Lemma 4. If R(x− δ) is well defined, where δ ∈ R, then

δ = S(R(x− δ)− δ,x) = B(R(x− δ),x) (9)

Proof. The relationship in 9 follows from the definitions of R, S and B. Again

for α ≥ 1, values of S and B in the equation above are well defined if R(x− δ)
is well defined. For 0 < α < 1 on the other hand the following is true. The

riskiness measure is defined for α > α∗11. By proposition 4.4, EUα∗(L(x) + δ+

x) = Uα∗(L(x)+δ). Hence WL(x) defined in proposition 2.1 for utility function

Uα∗ is equal to L(x) + δ = −min(x) + δ. And thus the lowest values of buying

and selling price when utility function is Uα∗ are:

S(L(x),x) = B(L(x) + δ,x) = δ

If buying and selling price are well defined for the lowest wealth levels, they

are also well defined for higher wealth levels by proposition 2.1, and hence the

lemma is proved.

The following proposition establishes a simple link between buying and sell-

ing price for a lottery and the riskiness measure for this lottery.

Proposition 5.1. Given wealth level W ≥ 0, CRRA utility function U with

RRA coefficient α in the interval (α∗,+∞), where α∗ satisfies φ( 1
L(x) , α

∗) = 0,

and any non-degenerate lottery x, the following relations hold:

W = R(x− S(W,x))− S(W,x) (10)

W = R(x−B(W,x)) (11)

Proof. By lemma 3, measures R(x−S(W,x)) and R(x−B(W,x)) are well de-

fined for an arbitrary non-degenerate lottery x. Now, it follows from definitions

of R(x) and S(W,x), B(W,x) that:

E [U (R(x−B(W,x)) + x−B(W,x))] = U(R(x−B(W,x)))

E [U (R(x− S(W,x)) + x− S(W,x))] = U(R(x− S(W,x)))

Therefore, it has to be that W = R(x − S(W,x)) − S(W,x) and W = R(x −
B(W,x)).

For the next proposition I will need two lemmas. They establish certain

delta properties of the riskiness measure.
11It is not indicated but α∗ is lottery-dependent.
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Lemma 5. Given lottery x and ∆ ∈ R such that riskiness for x and x + ∆

exists, the following holds:

R(x + ∆) ≤ R(x)−∆ ⇐⇒ ∆ ≥ 0

Proof. From the definition of R

0 = EU(R(x) + x)− U(R(x))

0 = EU(R(x + ∆) + x + ∆)− U(R(x + ∆))

Since U is increasing, ∆ ≥ 0 if and only if

EU(R(x) + x)− U(R(x)) ≤ EU(R(x)−∆ + x + ∆)− U(R(x)−∆)

And hence

0 = EU(R(x + ∆) + x + ∆)− U(R(x + ∆))

≤ EU(R(x)−∆ + x + ∆)− U(R(x)−∆)

Thus by proposition 4.4

R(x + ∆) ≤ R(x)−∆

Lemma 6. Given lottery x and ∆ ∈ R such that riskiness for x and x + ∆

exists, the following holds:

R(x + ∆) ≤ R(x) ⇐⇒ ∆ ≥ 0

Proof. ”Only if” part follows from lemma 5. ”If” part can be proved as follows:

By definition of R.

0 = EU(R(x) + x)− U(R(x))

0 = EU(R(x + ∆) + x + ∆)− U(R(x + ∆))

By proposition 4.4, and since R(x+∆) ≤ R(x), EU(R(x)+x+∆)−U(R(x)) ≥
0. And since utility is increasing it must be that ∆ ≥ 0.

Note that lemma 5 and lemma 6 both imply that it is impossible for R(x+∆)

to be between R(x)−∆ and R(x).

Now I can state a series of main results of this section which establish a well

defined connection between riskiness measure and buying and selling price for

a lottery.
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Proposition 5.2. Given wealth W and two lotteries x and y, if there exist

wealth levels W1,W2 such that S(W1,x) = S(W,y) and S(W2,y) = S(W,x).

Then:

S(W,x) ≥ S(W,y)

⇐⇒

R(y − S(W,x)) ≥ R(x− S(W,x)) ≥ R(y − S(W,y)) ≥ R(x− S(W,y))(12)

Proof. The requirement that there exist wealth levelsW1,W2 such that S(W1,x) =

S(W,y) and S(W2,y) = S(W,x) guarantees that R(x − S(W,y)) and R(y −
S(W,x)) are well defined. This is so due to lemma 3. Also, R(x − S(W,x))

and R(y − S(W,y)) are well defined due to this lemma. I will now prove the

equivalency stated in the proposition sequentially for the three inequalities in

(12).

S(W,x) ≥ S(W,y) ⇐⇒ R(y − S(W,y)) ≥ R(x− S(W,y))

Let ∆ = S(W,x)− S(W,y). By lemma 5, ∆ ≥ 0 if and only if

R(x− S(W,x))−R(x− S(W,x) + ∆) ≥ ∆

And after substituting the definition of ∆

R(x− S(W,x))−R(x− S(W,y)) ≥ S(W,x)− S(W,y)

By proposition 5.1, this is in turn equivalent to the following:

R(x− S(W,x))−R(x− S(W,y)) ≥ R(x− S(W,x))−R(y − S(W,y))

And after simplifying

R(y − S(W,y)) ≥ R(x− S(W,y))

Which is what I had to prove. Now notice that the second inequality R(x −
S(W,x)) ≥ R(y − S(W,y)) is equivalent to S(W,x) ≥ S(W,y) by proposition

5.1. It leaves the one remaining inequality to be proved.

S(W,x) ≥ S(W,y) ⇐⇒ R(y − S(W,x)) ≥ R(x− S(W,x))

Let ∆ = S(W,y)− S(W,x). Lemma 5 can be restated as follows:

R(x + ∆) ≥ R(x)−∆ ⇐⇒ ∆ ≤ 0

And hence replacing x with y − S(W,y)

R(y − S(W,y))−R(y − S(W,y) + ∆) ≤ ∆
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And after substituting the definition of ∆

R(y − S(W,y))−R(y − S(W,x)) ≤ S(W,y)− S(Wx)

By proposition 5.1 this is equivalent to

R(y − S(W,y))−R(y − S(W,x)) ≤ R(y − S(W,y))−R(x− S(W,x))

And after simplifying

R(y − S(W,x)) ≥ R(x− S(W,x))

This finishes the proof.

The above proposition establishes that selling price for lottery x is not lower

than the selling price for another lottery y at some wealth level if and only if the

riskiness measure of y−S(W,x) is not lower than x−S(W,x) and y−S(W,y)

is not lower than x − S(W,y). A similar proposition is obtained for buying

price for a lottery.

Proposition 5.3. Given wealth W and two lotteries x and y, if there exist

wealth levels W1,W2 such that B(W1,x) = B(W,y) and B(W2,y) = B(W,x).

Then:

B(W,x) ≥ B(W,y)

⇐⇒

R(y −B(W,x)) ≥ R(x−B(W,x)) = R(y −B(W,y)) ≥ R(x−B(W,y))

Proof. As in the previous proposition, all the riskiness measures are well defined

due to lemma 3 and the assumption that there exist wealth levels W1,W2 such

that S(W1,x) = S(W,y) and S(W2,y) = S(W,x) hold.

By proposition 5.1, R(x − B(W,x)) = R(y − B(W,y)). The two remaining

inequalities can be proved by using lemma 6.

R(y −B(W,x)) ≥ R(y −B(W,y)) ⇐⇒ B(W,x) ≥ B(W,y)

⇐⇒ R(x−B(W,x)) ≥ R(x−B(W,y))

The two propositions above establish a link between selling and buying price

for a lottery and the riskiness measure for gambles with prices. Even if riskiness

measure for a given gamble is not meaningful due to the fact that the gamble

has negative expectation or no losses, it is still meaningful and well-defined

for gambles with prices, i.e. for gambles constructed by subtracting buying or
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selling price from the original gamble.

The above two proposition can be extended beyond their local (for a given

wealth level) meaning. The following corollary to these propositions states a

global result on extended riskiness with prices in relation to selling (and as it

will turn out also buying) price for a lottery:

Corollary 1. Let x and y be any two lotteries. Suppose that s is a scalar which

satisfies:

s ∈ [max{min
W

S(W,x),min
W

S(W,y)},min{max
W

S(W,x),max
W

S(W,y)}] (13)

Then the following equivalence holds:

R(y − s) ≥ R(x− s) ⇐⇒ s ∈ {s : s = S(W,x),W ∈ W}

where W = {W : S(W,x) ≥ S(W,y)}.

First, the above corollary could alternatively be stated in terms of buying

price. To see this, observe the following. If W ∗ is wealth level at which selling

prices of x and y cross, i.e. S(W ∗,x) = S(W ∗,y) = S∗, then by lemma 7, it

holds that: S∗ = B(W ∗ + S∗,x) = B(W ∗ + S∗,y). Now, let’s define an equiv-

alent of set W for the case of buying price: V = {W : B(W,x) ≥ B(W,y)}.
The sets W and V are obviously different. However, by the argument I have

just given, the sets {s : s = S(W,x),W ∈ W} and {s : s = B(W,x),W ∈ V}
are the same. This is why the proposition above can be stated both in terms

of selling price as well as in terms of buying price.

Condition (13) guarantees that s has to be in the range of both S(W,x) and

S(W,y) as functions of wealth. In case of CRRA utility function, since propo-

sition 2.1 establishes exactly what the range of buying and selling price is, this

condition can be written explicitly. Suppose, for instance, that utility function is

CRRA with coefficient of relative risk aversion greater than 1. In this case condi-

tion (13) takes the following form: s ∈ [max{min(x),min(y)},min{E[x],E[y]}].
Cases in which the interval in (13) is empty, are not interesting since either x

is unambiguously better than y12, or the other way around. Of course, in such

a case it is possible to establish a similar (to the one above) proposition, where

riskiness of lotteries with different prices would be compared, i.e. the riskiness

of x− s1 and y − s2, where s1 6= s2. However, this would be a rather different

exercise to the one I wish to pursue in this section.

The next two propositions inform us what can be inferred about the riskiness
12All the values in x are higher than those in y.
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measure from the global properties of selling and buying price as functions of

wealth. These results are in fact special cases of the above corollary. However

it is useful to state them and prove independently.

Proposition 5.4. Given lotteries x and y and DARA utility function for which

”riskiness measures” R(x) and R(y) are well defined, the following holds:

B(W,y) > B(W,x) ∀W =⇒ R(x) > R(y)

Proof. Suppose not. Then R(x) ≤ R(y). By the proposition 5.1 equation (11),

given any x for which R is defined and unique I have for W = R(x):

R(x) = R(x−B(R(x),x))

By the uniqueness of R(x) I get that B(R(x),x) = 0. From the fact that B is

increasing in wealth for DARA utility (proposition 7.4) I have:

B(R(y),y) = 0 = B(R(x),x) ≤ B(R(y),x)

This proves that ∃W , such that B(W,y) ≤ B(W,x).

Proposition 5.5. Given lotteries x and y and DARA utility function for which

”riskiness measures” R(x) and R(y) are well defined. Then:

S(W,y) > S(W,x) ∀W =⇒ R(x) > R(y)

Proof. Suppose not. Then R(x) ≤ R(y). From the proof of proposition 5.4

I know that given any x for which R is defined and unique B(R(x),x) = 0.

Hence, by proposition 7.2, I know that S(R(x),x) = 0. From the the fact that

S is increasing in wealth for DARA utility (corollary 2)I have:

S(R(y),y) = 0 = S(R(x),x) ≤ S(R(y),x)

This proves that ∃W , such that S(W,y) ≤ S(W,x).

The reverse direction in the above two propositions at the same time cannot

be true, at least in the case of DARA utilities. To see it I can use the result from

Lewandowski (2009a) which states that buying selling price reversal for DARA

utilities is possible. That means that given any DARA utility there exist two

lotteries x and y such that the following holds:

S(W,y) > S(W,x) > B(W,x) > B(W,y)
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If the reverse direction in both propositions 5.4 and 5.5 was true, the above

pattern would not be possible. And hence the reverse direction of both propo-

sitions cannot be true. Whether the reverse direction in one case is true and in

another is not or whether the reverse direction in both cases is not true remains

unknown.

Below I wish to examine further connections between riskiness measure and

buying and selling price for a lottery. The proposition below is an extension to

Pratt (1964) famous theorem on comparative risk aversion. It shows that riski-

ness measure can be used along with buying price and selling price to compare

risk aversion across individuals.

Proposition 5.6. Given two CRRA utility functions U1, U2 with RRA coeffi-

cients α1 and α2, respectively, both in the interval (α∗,+∞), where α∗ satisfies

φ( 1
L(x) , α

∗) = 0, and any non-degenerate lottery x, such that R1(x) and R2(x)

exists, the following holds:

R1(x) > R2(x) ⇐⇒ B1(W,x) < B2(W,x) ∀W ⇐⇒ S1(W,x) < S2(W,x) ∀W

where Ri, Bi and Si are, respectively, the riskiness measure, the buying price

and the selling price corresponding to utility function Ui.

Proof. The second equivalence above is a special case (CRRA) of proposition

7.5 and hence was already proved there. I need to prove the first equivalence.

(⇐=)

I start by assuming B1(W,x) < B2(W,x) ∀W . By lemma 3 I know that Ri(x−
Si(W,x)) and Ri(x − Bi(W,x)) exist. By proposition 5.1 I know that W =

R(x−B(W,x)). Furthermore, I know that B(R(x),x) = 0. Therefore:

R1(x) = R1(x−B1(R1(x),x))

= R2(x−B2(R1(x),x))

> R2(x)

Since B2(R1(x),x) > B1(R1(x),x) = 0, the last inequality follows from lemma

6. That the riskiness measure R2(x−B2(R1(x),x)) is well defined follows from

the similar argument as in the proof of lemma 3. Since x was arbitrary, the

above implication holds generally.

(=⇒)

I start by assuming R1(y) > R2(y) for all y, such that R1 and R2 are defined.

This holds in particular for lottery y = x − B1(W,x), for some W . It follows
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from proposition 5.1, that:

W = R2(x−B2(W,x)) = R1(x−B1(W,x))

> R2(x−B1(W,x))

And hence I know that R2(x−B2(W,x)) > R2(x−B1(W,x)). By lemma 6, I

conclude that B1(W,x) < B2(W,x). Since wealth W was arbitrary, as well as

lottery x, the proof is finished.

I proved that one can use buying and selling price for a lottery as well as

riskiness measure as equivalent ways to express absolute risk aversion. Although

the proof is only valid for the CRRA case, the proposition is true whenever the

existence of riskiness measure for the appropriate lotteries is guaranteed.

6 Expected utility decision-making using riskiness

measure and buying and selling price for a lottery

Finally in this section, I will show how one can make decisions based on the

concepts of buying and selling price for a lottery or riskiness measure. It shall

come as no surprise that no matter with help of what concepts decisions are

made within expected utility theory, they give rise to equivalent decision crite-

ria.

Consider two situations.

• Case A: A decision maker with wealth W ≥ 0 considers buying a nonde-

generate lottery x for a price b ∈ (min(x),E[x])

• Case B decision maker with wealth W ≥ 0 participating in a nondegen-

erate lottery x considers selling lottery x for a price s ∈ (min(x),E[x])

Proposition 6.1. Given utility function U and lottery x, such that the argu-

ments of U are in the domain of U amd S(W,x) and B(W,x) are both well

defined, the following criteria for decision making are equivalent:

• Expected utility criterion:

– Case A: Buy x if EU(W + x− b) ≥ U(W ), otherwise don’t buy.

– Case B: Sell x if EU(W + x) ≤ U(W + s), otherwise don’t sell.

• Buying/selling price criterion:

– Case A: Buy x if B(W,x) ≥ b, otherwise don’t buy.
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– Case B: Sell x if S(W,x) ≤ s, otherwise don’t sell.

• Riskiness measure criterion:

– Case A: Buy x if W ≥ R(x− b)

– Case B: Sell x if W ≤ R(x− s)− s

Proof. The proof follows from the respective definitions and hence is omitted.

Notice that since b, s ∈ (min(x),E[x]), R(x− b) and R(x− s) are well defined

by lemma 3.

7 Concluding remarks

In this paper I analyzed riskiness measure as introduced by Foster and Hart

(2007). I gave simple intuition behind their result and I tried to make some

steps towards extending this measure in two respects - first to define an extended

riskiness measure based on DARA utility functions and derive necessary and

sufficient conditions for existence and uniqueness of such measure for DARA

and CRRA class of utility functions. Obviously, for the more specialized case of

CRRA utility functions more exact conditions are obtained than for the more

general case of DARA utilities. I also tried to extend the domain of riskiness

measure. For gambles with non-positive expectation or no losses I proposed a

way to compare their riskiness by subtracting prices from them. If the riskiness

ordering is unchanged over the whole range of prices for which the lottery minus

the price exists is unchanged, something can be inferred about the riskiness of a

gamble without prices. To this end a number of useful properties relating buying

and selling price for a lottery and riskiness measure were established and should

be useful also for their own sake. An extension of Pratt (1964) famous result

on comparative risk aversion involving riskiness measure along with buying and

selling price for a lottery was stated and proved. Finally a simple link between

decision-making using riskiness measure and decision-making using buying and

selling price was developed.
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Appendix

Lemma 7. Given any lottery x and wealth level W , the following three relations

between buying price and selling price hold:

S[W,x−B(W,x)] = 0 (14)

S[W −B(W,x),x] = B(W,x) (15)

B[W + S(W,x),x] = S(W,x) (16)

Proposition 7.1. For any non-degenerate lottery x and any wealth W such

that buying and selling price exist, S(W,x) and B(W,x) lie in the interval

(min(x),E(x)). For a degenerate lottery x, S(W,x) = B(W,x) = x.

The following is a corollary to Pratt (1964) famous theorem of comparative

risk aversion.

Corollary 2. For a strictly increasing and twice differentiable utility function

U with continuous second derivative, the following holds:

• S(W,x) is increasing/constant/decreasing in W for every x iff A(W ) is

decreasing/constant/increasing in W

Proposition 7.2. For any lottery x and any wealth W , for utilities with de-

creasing absolute risk aversion (DARA) the following equivalence holds:

B(W,x) > 0 ⇐⇒ B(W,x) < S(W,x)

Proposition 7.3. For any lottery x and any wealth level W and for ∆ ∈ R,

the following holds:

B(W,x + ∆) = B(W,x) + ∆ (17)

S(W,x + ∆) = S(W + ∆,x) + ∆ (18)

Notice that for DARA utility function and B(W,x) > 0 the above result

together with proposition 7.2 implies the following:

S(W,x + ∆)−B(W,x + ∆) = S(W + ∆,x)−B(W,x) > S(W,x)−B(W,x)

Proposition 7.4. For a strictly increasing and twice differentiable utility func-

tion U with continuous second derivative, the following holds:

• B(W,x) is increasing/constant/decreasing in W for every x iff A(W ) is

decreasing/constant/increasing in W
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Lemma 8. For differentiable DARA utility functions, given any n-dimensional

non-degenerate lottery x and any wealth level W , the following holds:

• EU ′(W + x)− U ′(W + S(W,x)) > 0

• EU ′(W + x−B(W,x))− U ′(W ) > 0

• EU ′(R(x) + x)− U ′(R(x)) > 0

• 0 < ∂B(W,x)
∂W < 1

Proof. From the definition of buying, selling price and the fact that they are

both increasing in wealth, it follows that:

∂S(W,x)
∂W

=
EU ′(W + x)− U ′(W + S(W,x))

U ′(W + S(W,x))
> 0

∂B(W,x)
∂W

=
EU ′(W + x−B(W,x))− U ′(W )

EU ′(W + x−B(W,x))
> 0

All of the properties above follow immediately.

Proposition 7.5. For two different utility functions U1 and U2, any wealth

level W and any n-dimensional non-degenerate random variable x with bounded

values, I define corresponding selling and buying prices S1(W,x), B1(W,x) and

S2(W,x), B2(W,x). The following equivalence holds:

∀W ∀x : ∃ δ > 0 |xi| < δ ∀i ∈ {1, ..., n}

S1(W,x) > S2(W,x) ⇐⇒ B1(W,x) > B2(W,x)

Proposition 7.6. The following two statements are equivalent:

i. Bernoulli utility function exhibits CRRA

ii. buying and selling price for any lottery are homogeneous of degree one i.e.

S(λW, λx) = λS(W,x), ∀λ > 0

B(λW, λx) = λB(W,x), ∀λ > 0
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