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Abstract

We consider a pure exchange, general equilibrium model, with two periods and a finite number of

states, goods, numeraire assets, and households. Participation on the asset market is restricted in a

household specific manner, imposing upper bounds on the amounts of borrowing which can be obtained

using assets. Those bounds are assumed to depend on asset and good prices - hence the reference

to endogenous borrowing restrictions in the title. After having established existence of equilibria, we

show that for an open and dense subset of the set of the economies, equilibria are finite and regular.

We then analyze optimality properties. We first show generic suboptimality. Afterwards, we restrict

our attention to the significant set of economies in which a sufficiently high number of participation

constraints is “strictly” binding, i.e., utilities of involved households could be increased relaxing those

constraints. We prove that, generically in that set, associated equilibria are Pareto improvable through

a local change of those constraints.

Keywords: General equilibrium; Restricted participation; Financial markets; Numeraire assets; Sub-
optimality; Pareto Improving.

JEL classification: D50, D53, D61.

1 Introduction

We present a general equilibrium model with uncertainty and restricted, personalized participation on
the asset markets. Each household chooses a consumption vector and an asset demand as in a standard
model with incomplete or potentially complete markets, with the additional constraint that asset demand
is restricted to belong to a household specific portfolio set.

Some papers on the topic are available in the literature. Siconolfi (1988) and, in a multiperiod frame-
work, Angeloni and Cornet (2006) show existence of equilibria assuming the portfolio set is a closed,
convex subset of a Euclidean space containing zero for each household and a neighborhood of zero for
some of them. Balasko, Cass and Siconolfi (1990) analyze, in a model with nominal assets, the case in
which the portfolio constraint set is a linear subspace and show that if enough households are subject to
similar constraints, then restricted participation leads to a degree of real indeterminacy comparable to
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the one of the incomplete markets case. Polemarchakis and Siconolfi (1997) prove existence for a case of
restricted participation with real assets, i.e., when payoffs are denominated in multiple commodities. Cass,
Siconolfi and Villanacci (2001) study the case in which portfolio sets are described by smooth restriction
functions, and show generic regularity of equilibria.1 In a model with numeraire assets and outside money
with restrictions for both type of assets, Carosi (2001) proves generic inefficiency of equilibria and effec-
tiveness of monetary policy. Martins Da-Rocha and Triki (2005) present an original proof of existence.
Won and Hahn (2007) discuss the presence of redundant assets. Hens, Herings and Predtetchinskii (2006)
consider a model with one good per spot and give conditions for the existence of arbitrage possibilities
when households cannot exchange at all some assets. In the same framework, Herings and Schmedders
(2006) study the case of transaction costs proportional to the units (or values) of traded assets and present
homotopy arguments to study equilibria. Basak, Cass, Licari and Pavlova (2008) describe how partici-
pation constraints may generate indeterminacy of equilibria, presenting an economy with two goods and
two households for which adding a constraint may generate additional inefficient (and sunspot) equilibria.
Aouani and Cornet (2009) consider a two period model with households having nonordered preferences
and show existence of equilibria for the case of linear constraints. Carosi, Gori and Villanacci (2009)
present a case in which the portfolio set is price dependent. After having shown existence, they prove that
if constraints are homogeneous of degree zero with respect to spot prices, equilibria are typically finite
and regular, and present a robust example of indeterminacy in the nonhomogeneous case.2

In our model, each household has to satisfy a specific constraint on the asset portfolio which depends
on asset and good prices, an assumption which makes the financial restrictions endogenous. That feature
is shared with the model in Carosi, Gori and Villanacci (2009). Restriction functions in the present paper
are however different from the ones used there: our specification of the restriction functions does not
require that, for each asset, there is a household whose participation does not depend on the demand of
that asset. In particular, we assume that each household cannot sell more than a given quantity, depending
on prices, of each asset. In other words, we impose upper bounds on the amounts of borrowing which
can be obtained using assets. Examples of that restriction are the presence of no short sale constraints
of the form −za

h ≤ 0, where za
h is the demand of asset a by household h, or constraints on borrowing

like −za
h ≤ σ, with σ > 0. Both above restrictions are of the exogenous type, but they can be easily

thought as endogenous. In fact σ could be assumed to be fixed today and in a near future, but it would
surely change in a relatively different economic situation (described in terms of prices and fundamentals).
Another related example of endogenous borrowing restriction is the case of the presence of an upper bound
equal to a proportion of the individual wealth, a short cut to incorporate the well known moral hazard
problems.

We can now present the main results of the paper. We consider a pure exchange, general equilibrium
model, with two periods and a finite number of states, goods, assets, and households. Assets give the right
to receive a certain quantity of the numeraire commodity. Participation on the asset market is restricted
in a household specific manner. Economies are described by endowments of commodities, utility functions,
asset yield matrices, and borrowing functions. After having established existence of equilibria, we show
that for an open and dense subset of the set of the economies, equilibria are finite and regular. We then
analyze optimality properties. We first show generic suboptimality. Afterwards, we restrict our attention
to the significant set of economies in which a sufficiently high number of participation constraints is
“strictly” binding, i.e., utilities of involved households could be increased relaxing those constraints. We
believe that even casual observation of financial restrictions engineered and introduced in financial markets
shows that constraints are created with the purpose of being strictly binding for some households. We
prove that, generically in the set of economies with strictly binding constraints, associated equilibria are
Pareto improvable through a local change of those constraints.

The paper is organized in a standard manner. Section 2 presents the set-up of the model and the defi-
nition of equilibrium. Section 3 lists the main results (existence, generic regularity, generic suboptimality
and possibility of Pareto improvements), whose proofs are contained in the Appendix.

1In an unpublished note, Lisboa (1995) discusses indeterminacy and optimality properties in the model introduced in
Cass, Siconolfi and Villanacci (2001).

2Many finance papers focus on how constraints on asset markets affect equilibrium consumption and prices: among them
see the textbook on corporate finance by Tirole (2006) and the literature quoted there.
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2 Set-up of the model

Our restricted participation model builds up on the very standard two-period, pure exchange economy
with uncertainty and financial markets. We consider a commodity market in which C ≥ 2 types of different
commodities, denoted by c ∈ C = {1, 2, . . . , C}, are traded both today and tomorrow. We assume that
tomorrow only one among S ≥ 1 possible states of the world, denoted by s ∈ {1, . . . , S}, will occur. We
denote today by s = 0 and we define S = {0, 1, . . . , S}. Asset markets open in the first period, and
there are A ≥ 1 assets traded, denoted by a ∈ A = {1, 2, . . . , A}. We assume A ≤ S, see (7) below3.
Finally, there are H ≥ 2 households, denoted by h ∈ H = {1, 2, . . . ,H}. The time structure of the model
is as follows: today, households exchange commodities and assets, and consumption takes place. Then,
tomorrow, uncertainty is resolved, households honor their financial obligations, and they again exchange
and then consume commodities.

Let4 xc
h(s) ∈ R++ be the consumption of commodity c in state s by household h, and let ec

h(s) ∈ R++

be the endowment of commodity c in state s owned by household h. We define

xh(s) = (xc
h(s))c∈C ∈ R

C
++, xh = (xh(s))s∈S ∈ R

G
++, x = (xh)h∈H ∈ R

GH
++ ,

eh(s) = (ec
h(s))c∈C ∈ R

C
++, eh = (eh(s))s∈S ∈ R

G
++, e = (eh)h∈H ∈ R

GH
++ ,

where G = C(S + 1).
Household h’s preferences are represented by a utility function uh : R

G
++ → R. We assume, for every

h ∈ H,

uh ∈ C2(RG
++); (1)

∀xh ∈ R
G
++, Duh(xh) ≫ 0 ; (2)

∀ v ∈ R
G \ {0} , xh ∈ R

G
++, Duh(xh)v = 0 ⇒ v D2uh(xh) v < 0 ; (3)

∀xh ∈ R
G
++,

{
xh ∈ R

G
++ : uh(xh) ≥ uh(xh)

}
is closed in the topology of R

G. (4)

Let U be the set of vectors u = (uh)h∈H of such utility functions. In what follows we are sometimes going
to deal with the next stronger version of Assumptions (1) and (3):

uh ∈ C3(RG
++); (5)

∀ v ∈ R
G \ {0} , xh ∈ R

G
++, v D

2uh(xh) v < 0 . (6)

With innocuous abuse of notation, we still denote by U the set of utility functions satisfying Assumptions
(5) and (6), as well.

We denote by pc(s) ∈ R++ the price of commodity c at spot s, by qa ∈ R the price of asset a and by
za
h ∈ R the quantity of asset a held by household h. Moreover we define

p(s) = (pc(s))c∈C ∈ R
C
++, p = (p(s))s∈S ∈ R

G
++, q = (qa)a∈A ∈ R

A,

zh = (za
h)a∈A ∈ R

A, z = (zh)h∈H ∈ R
AH .

Furthermore, we denote by ya(s) ∈ R the yield in state s of asset a in units of the numeraire commodity,
we choose to be commodity C, y (s) = (ya(s))a∈A ∈ R

A is the vector of asset yields in state s and

Y =




y1(1) · · · ya(1) · · · yA(1)
...

...
...

y1(s) . . . ya(s) . . . yA(s)
...

...
...

y1(S) . . . ya(S) . . . yA(S)




3Such assumption is done with loss of generality, but it is commonly made and technically convenient.
4For every positive integer N, we define the binary relations ≫, ≥ and > over RN as follows: given v = (v1, . . . , vN ) and

w = (w1, . . . , wN ) ∈ RN , we write
v ≫ w if vi > wi, ∀ i ∈ {1, . . . , N} ;
v ≥ w if vi ≥ wi, ∀ i ∈ {1, . . . , N} ;
v > w if v ≥ w and v 6= w.

We define also the sets RN
+ = {v ∈ RN : v ≥ 0} and RN

++ = {v ∈ RN : v ≫ 0}.
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is the corresponding yield matrix. It greatly simplifies our analysis (but it is not without loss of generality)
to assume that

rank Y = A ≤ S. (7)

Let M(S,A) be the space of the S ×A matrices with real elements and let

Y = {Y ∈ M(S,A) : Y satisfies (7)}.

Consistently with our restricted participation framework, we assume that each household has only
partial access, in a personalized manner, to the asset market. In particular, we suppose that each household
cannot sell more than a fixed quantity, depending on commodity and asset prices, of each asset. We assume
that, for every h ∈ H, there is a function

σh : R
G
++ × R

A → R
A, (p, q) 7→ (σa

h(p, q))a∈A

such that, for every (p, q) ∈ R
G
++ × R

A, σa
h(p, q) represents the largest quantity of asset a that household

h can sell at prices (p, q), i.e., the maximum amount she can borrow using asset a. In other words, we
add the following constraints to household h’s maximization problem:

∀ a ∈ A, −za
h ≤ σa

h(p, q).

We call each function σh borrowing function. We assume that,

∀h ∈ H, σh ∈ C2(RG
++ × R

A,RA); (8)

∀h ∈ H, a ∈ A, (p, q) ∈ R
G
++ × R

A, σa
h(p, q) ≥ 0; (9)

∀ a ∈ A, (p, q) ∈ R
G
++ × R

A,

H∑

h=1

σa
h(p, q) > 0; (10)

∀h ∈ H, (p, q) ∈ R
G
++ × R

A, σh (p(0), . . . , p(S), q) = σh

( p(0)

pC(0)
, . . . ,

p(S)

pC(S)
,

q

pC(0)

)
. (11)

Let us denote by Σ the set of vectors σ = (σh)h∈H of such functions. Assumption (8) allows to use
differential techniques. Assumption (9) permits no participation on the financial markets. Assumption

(10) insures that each asset is nontrivially exchanged, as
∑H

h=1 σ
a
h(p, q) = 0 would imply that asset a is not

traded in equilibrium. Assumption (11) says that participation constraints are not affected by nominal,
i.e., price, changes. In what follows we are sometimes going to deal with the next stronger version of
Assumptions (9) and (10):

∀h ∈ H, a ∈ A, (p, q) ∈ R
G
++ × R

A, σa
h(p, q) > 0 . (12)

With innocuous abuse of notation, we still denote by Σ the set of borrowing functions satisfying Assump-
tion (12), as well.

We define the set of economies as E = R
GH
++ × U × Y × Σ with generic element E = (e, u, Y, σ), and

for given (p, q, E) ∈ R
G
++ × R

A × E , we assume household h ∈ H has to solve the following maximization
problem:

max
(xh,zh)

uh(xh) s.t.





p(0)xh(0) + qzh = p(0)eh(0)

p(s)xh(s) = p(s)eh(s) + pC(s)y(s)zh, s ∈ {1, . . . , S}

zh + σh(p, q) ≥ 0.

(13)

Note that, because of (11), (13) is invariant with respect to price normalization spot by spot. Then,
without loss of generality, we can assume that commodity C is the unit of measure of the exchanges.

We are now ready to give the definition of equilibrium we use in our framework.
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Definition 1. Let us consider E ∈ E . We say that θ =
(
(xh, zh)h∈H , p, q

)
∈ R

GH
++ ×R

AH ×R
G
++×R

A = Θ
is an equilibrium for E if, for every h ∈ H, (xh, zh) solves Problem (13) at (p, q, E), (x, z) satisfies market

clearing conditions, that is,
H∑

h=1

(xh − eh) = 0 and

H∑

h=1

zh = 0,

and, for every s ∈ S, pC(s) = 1. We denote by Θ(E) ⊆ Θ and X(E) ⊆ R
GH
++ the set of equilibria and the

set of equilibrium allocations for economy E ∈ E , respectively.

We are also interested in considering the intervention of a planner and in studying its effects on the
possibility of Pareto improving equilibria. We assume the planner has the power to (locally) change
households’ borrowing functions by a “proportionality” factor tah. Therefore, defined

t = (tah)a∈A,h∈H ∈ (−1,+∞)AH = T ,

the presence of the planner transforms each economy E = (e, u, Y, σ) ∈ E into an economy E (t) =
(e, u, Y, σ (t)) ∈ E , where σ (t) = (σa

h (t))
a∈A,h∈H and, for every a ∈ A, h ∈ H,

σa
h (t) = (1 + tah)σa

h.

3 Main results

In this section, we present our main results. Proofs are deferred to the Appendix. We stress that Theorems
2, 3, 4 below can be proved both assuming (5), (6) and (12), as well as without assuming (5), (6) and
(12) in the definition of economy. On the contrary, in order to prove Theorem 5 we need to assume (5),
(6) and (12). In what follows we prove Theorems 2, 3, 4 without assuming (5), (6) and (12). The proof
assuming those further conditions is exactly the same.
An indispensable preliminary result in every general equilibrium model is existence of equilibria. The
following existence result can be immediately deduced by Theorems 2 and 3 in Gori, Pireddu and Villanacci
(2010).

Theorem 2. For every E ∈ E , Θ(E) 6= ∅.

Consider now the Hausdorff topological vector space

V = R
GH
++ ×

[
C3(RG

++)
]H

× R
AS ×

[
C2(RG

++ × R
A,RA)

]H
, (14)

endowed with the product topology of the natural topologies on each of the spaces in the Cartesian
product. In what follows, we endow E ⊆ V with the topology induced by V .

Given S finite set, we denote by |S| its cardinality. Next theorem shows that typically in the set of
economies, equilibria are finite in number and depend smoothly upon elements in that set.

Theorem 3. There exists an open and dense set D ⊆ E such that, for every E∗ ∈ D,

Θ(E∗) = {θi∗}k
i=1, (15)

where k is a positive integer, and there exist an open neighborhood V (E∗) ⊆ E of E∗ and, for every

i ∈ {1, . . . , k}, an open neighborhood O(θi∗) ⊆ Θ of θi∗ and gi : V (E∗) → O(θi∗) such that 5:

gi ∈ C1, gi(E
∗) = θi∗ and O(θi∗) ∩O(θj∗) = ∅, for i 6= j; (16)

{
(E, θ) ∈ V (E∗) ×O(θi∗) : θ ∈ Θ(E)

}
= graph(gi); (17)

{(E, θ) ∈ V (E∗) × Θ : θ ∈ Θ(E)} =
k⋃

i=1

graph(gi). (18)

5Notice that the maps gi are C1 on a topological vector space. The precise definition of this concept can be found in the
Appendix, Section A.2.
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The theorem below shows the easily conjectured typical inefficiency of equilibria.

Theorem 4. If A < S, there exists an open and dense set D△ ⊆ E such that, for every E ∈ D△, each

x ∈ X(E) is not Pareto Optimal.

A consequence of the proof of Theorem 3 is that equilibria associated with economies in the set D are
such that if a borrowing constraint holds with equality, i.e., it is binding, utility of the involved household
could be increased changing that constraint. The presence of that kind of constraints is a necessary
condition for a successful intervention of a planner acting on participation restrictions. Theorem 5 shows
in fact that, if in correspondence to a certain equilibrium there is a number of binding constraints at least
equal to the number of households, then it is possible to Pareto improve upon the considered equilibrium.6

Let Λ : Θ × E → N be defined as

Λ(θ,E) = | {(a, h) ∈ A×H : za
h + σa

h(p, q) = 0} |. (19)

Theorem 5. There exists an open and dense set D♦ ⊆ E such that, if

(θ∗, E∗) ∈
{
(θ,E) ∈ Θ ×D♦ : θ ∈ Θ(E),Λ(θ,E) ≥ H

}
,

then, for every open neighborhood V(0) ⊆ T of 0, there exist t ∈ V(0) and θ ∈ Θ(E∗ (t)) such that

(uh(xh))h∈H ≫ (uh(x∗h))
h∈H.

A Appendix

A.1 Preliminary notation and results

Define the vectors

x
\
h(s) = (xc

h(s))
c∈{1,...,C−1} ∈ R

C−1
++ , x

\
h =

(
x
\
h(s)

)
s∈S

∈ R
G−(S+1)
++ ,

e
\
h(s) = (ec

h(s))
c∈{1,...,C−1} ∈ R

C−1
++ , e

\
h =

(
e
\
h(s)

)
s∈S

∈ R
G−(S+1)
++ .

Because of the validity of S + 1 Walras’ laws in our model, the significant market clearing conditions in
Definition 1 are in fact

H∑

h=1

(
x
\
h − e

\
h

)
= 0 and

H∑

h=1

zh = 0.

Since we are going to study equilibria in terms of first order conditions associated with households’
maximization problems and (significant) market clearing conditions, define

Ξ = R
GH
++ × R

(S+1)H × R
AH × R

AH × R
G
++ × R

A

with generic element
ξ =

(
(xh, λh, zh, µh)h∈H , p, q

)
= (x, λ, z, µ, p, q) ,

and the function7

F : Ξ × E × T → R
dim(Ξ),

6In more technical terms, the proof of Theorem 3 shows that each borrowing constraint for each household is not in a
so-called “border line case”, i.e., it is not the case that both the constraint and the associated multiplier are equal to zero.
Therefore, if a borrowing constraint holds with equality, the associated multiplier is positive and the constraint is said to be
“strictly binding”. In other words, all binding constraints are strictly binding. For every economy E belonging to the set D
introduced in Theorem 3 and for every θ ∈ Θ(E), the integer Λ(θ, E) defined in (19) denotes the cardinality of the set of
strictly binding constraints associated with the pair (θ, E).

7dim(Ξ) denotes the dimension of the manifold (open set) Ξ.
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F (ξ, E, t) =




(20.1) Dxh(s)uh(xh) − λh(s)p(s)

(20.2)
−p(0)(xh(0) − eh(0)) − qzh

−p(s)(xh(s) − eh(s)) + pC(s)y(s)zh, s ∈ {1, . . . , S}

(20.3) −λh(0)qa +
S∑

s=1
λh(s)pC(s)ya(s) + µa

h

(20.4) min {µa
h, z

a
h + (1 + tah)σa

h (p, q)}

(20.5)
H∑

h=1

(
x
\
h − e

\
h

)

(20.6)
H∑

h=1

zh

(20.7) pC(s) − 1




(20)

Given now (E, t) ∈ E × T , it is immediate to prove that if θ =
(
(xh, zh)h∈H , p, q

)
∈ Θ(E(t)), then there

exists a unique (λh, µh)h∈H ∈ R
(S+1)H × R

AH such that ξ =
(
(xh, λh, zh, µh)h∈H , p, q

)
∈ Ξ solves system

F(ξ, E, t) = 0. Sometimes we will call such ξ the extended equilibrium associated with θ. Vice versa, if
ξ =

(
(xh, λh, zh, µh)h∈H , p, q

)
∈ Ξ solves system F (ξ, E, t) = 0, then

(
(xh, zh)h∈H , p, q

)
∈ Θ(E(t)).

Let us also introduce the function F0 : Ξ × E → R
dim(Ξ), F0(ξ, E) = F(ξ, E, 0). The following is a

consequence of Theorem 2:

Theorem 6. For every E ∈ E, there exists ξ ∈ Ξ such that F0(ξ, E) = 0.

As a corollary it follows that, since F(ξ, E, t) = F0(ξ, E(t)), for every (E, t) ∈ E×T , system F(ξ, E, t) = 0
has always solutions in the variable ξ.

Later we are going to use the following result (see Villanacci et al. (2002)).

Theorem 7. Let m, p, n and α be nonnegative integers, and let M,Ω and N be Cα manifolds of dimensions

m, p and n, respectively. Let F : M × Ω → N be a Cα function. Assume α > max{m − n, 0}. If y is a

regular value for F, then there exists a full measure subset Ω∗ of Ω such that for any ω ∈ Ω∗, y is a regular

value for Fω : M → N, x 7→ Fω(x) = F (x, ω).

Let V be a topological Hausdorff vector space, V ⊆ V be an open set and f : V → R
n be a function.

We say that f ∈ C0(V,Rn) if f is continuous, while f ∈ C1(V,Rn) if it is continuous, there exists the limit

df(v, w) = lim
ε→0

f(v + εw) − f(v)

ε
, ∀v ∈ V,w ∈ V ,

and the function df : V × V → R
n is continuous.

Given now any (not necessarily open) set X ⊆ V , and f : X → R
n, we say f ∈ C0(X,Rn) if f is

continuous with respect to the topology induced by V on X, while, as in the finite dimensional setting,
f ∈ C1(X,Rn) if for every v0 ∈ X there exists an open neighborhood of v0 in V , say V (v0), and a function
f : V (v0) → R

n such that f ∈ C1(V (v0),R
n) and, for every v ∈ V (v0) ∩X, f(x) = f(x).

Those definitions allow to state the following implicit function theorem which is a simplified version of
Theorem 2.3 in Glöckner (2006).

Theorem 8. Let us consider f : O× V → R
n, where O is an open subset of R

n and V is an open subset

of a topological Hausdorff vector space V . Assume f ∈ C1(O × V,Rn) and let (x0, v0) ∈ O × V such

that f(x0, v0) = 0 and Dxf(x0, v0) is invertible 8. Then there exist O(x0) ⊆ O open neighborhood of x0,

V (v0) ⊆ V open neighborhood of v0 and g : V (v0) → O(x0) such that

1. g ∈ C1(V (v0), O(x0)),

2. g(v0) = x0,

3. {(x, v) ∈ O(x0) × V (v0) : f(x, v) = 0} = {(x, v) ∈ O(x0) × V (v0) : x = g(v)}.

8Note that if f ∈ C1(O × V, Rn) then, for every v ∈ V , f(·, v) : O → Rn, x 7→ f(x, v), belongs to C1(O, Rn) and thus, for
every (x, v) ∈ O × V, Dxf(x, v) is well defined.
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A.2 Generic regularity of equilibria

In what follows we will need the next lemma. We recall that a function f : A → B, with A and B

topological spaces, is proper if, for every K ⊆ B compact set, f−1(K) ⊆ A is compact, too. We also recall
that any proper and continuous function is closed, i.e., it maps closed sets onto closed sets.

Lemma 9. F is continuous on Ξ × E × T and

π : F−1(0) → E , (ξ, E, t) 7→ π (ξ, E, t) = E

is proper. In particular, F0 is continuous on Ξ × E and

π0 : F−1
0 (0) → E , (ξ, E) 7→ π0 (ξ, E) = E

is proper.

Proof. The continuity of F is immediate. In order to show that π is proper, we have to prove that
each sequence (ξ[n], E[n], t[n])n∈N in F−1(0), such that (E[n], t[n]) converges in E , admits a converging
subsequence in F−1(0). Let us assume that

(E[n], t[n]) = (e[n], u[n], Y [n], σ[n], t[n]) → (E, t) = (e, u, Y , σ, t) ∈ E × T .

Then it suffices to show that, up to a subsequence, (ξ[n])n∈N converges to a certain ξ ∈ Ξ : indeed the
condition F(ξ, E, t) = 0 follows by the continuity of F .
As we are going to use a diagonal argument, every time we say that a sequence converges we mean it has
a converging subsequence.

Let us start with the convergence of x[n]. For a fixed h ∈ H, we know that, for every n ∈ N,
(
x

[n]
h , z

[n]
h

)
is

solution to the problem

max
(xh,zh)

u
[n]
h (xh) s.t.





p[n](0)xh(0) + q[n]zh = p[n](0)e
[n]
h (0)

p[n](s)xh(s) = p[n](s)e
[n]
h (s) + pC,[n](s)y[n](s)zh, s ∈ {1, . . . , S}

za
h + (1 + t

a,[n]
h )σ

a,[n]
h (p[n], q[n]) ≥ 0,

and then, since (e
[n]
h , 0) belongs to the constraint set, it has to be u

[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ). As (e

[n]
h )n∈N

converges to eh ∈ R
G
++, it holds that the compact set Sh = {e

[n]
h }∞n=1 ∪ {eh} is a subset of R

G
++ and we

have
u

[n]
h (x

[n]
h ) ≥ u

[n]
h (e

[n]
h ) ≥ min

xh∈Sh

u
[n]
h (xh) ≥ min

xh∈Sh

uh(xh) − εn,

for a suitable sequence (εn)n∈N in R++ such that εn → 0 if n → ∞, by the definition of the topology on
C2(RG

++). Indeed we can define, for every n ∈ N,

εn = max
w∈Sh

∣∣u[n]
h (w) − uh (w)

∣∣.

Let x∗h ∈ Sh be such that minxh∈Sh
uh(xh) = uh(x∗h), and let 1 = (1, . . . , 1) ∈ R

G and δ > 0 be small
enough such that x∗h − 2δ1 ∈ R

G
++. Obviously, since by (2), uh(x∗h) > uh(x∗h − δ1), there exists n1 such

that n ≥ n1 implies uh(x∗h) − εn ≥ uh(x∗h − δ1) and thus, for every n ≥ n1,

u
[n]
h (x

[n]
h ) ≥ uh(x∗h − δ1). (21)

Of course, because of the validity of S + 1 Walras’ laws in our model, we can also assume that, for every
n ≥ n1,

0 ≪ x
[n]
h ≤

H∑

h=1

e
[n]
h ≤

H∑

h=1

eh + 1.
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Our purpose now is to prove that for infinite values of n it is uh(x
[n]
h ) ≥ uh(x∗h − 2δ1).

Let x̂h ∈
[
0,

∑H
h=1 eh + 1

]
be a cluster point of (x

[n]
h )n≥n1

. Then we can assume x
[n]
h → x̂h. Consider any

x̃h ∈ R
G
++ such that uh(x̃h) = uh(x∗h−2δ1). If we take n large enough, by (21), it is u

[n]
h (x

[n]
h )−u

[n]
h (x̃h) ≥ 0.

Then, for n sufficiently large,

0 ≤ u
[n]
h (x

[n]
h ) − u

[n]
h (x̃h) ≤ Dxh

u
[n]
h (x̃h)(x

[n]
h − x̃h)

=
(
Dxh

u
[n]
h (x̃h) −Dxh

uh(x̃h)
)
(x

[n]
h − x̃h) +Dxh

uh(x̃h)(x
[n]
h − x̃h).

Taking the limit as n→ ∞ in the previous inequality, we achieve

Dxh
uh(x̃h)(x̂h − x̃h) ≥ 0.

Then
x̂h ⊆

⋂

x̃h∈{y∈RG
++:uh(y)=uh(x∗

h
−2δ1)}

{
y ∈ R

G : Dxh
uh(x̃h)(y − x̃h) ≥ 0

}
. (22)

Since the right hand side of (22) is exactly {y ∈ R
G : uh(y) ≥ uh(x∗h − 2δ1)}, which is a subset of R

G
++ by

(4), then x̂h ∈ R
G
++ and the proof is complete.

As regards the convergence of λ[n], from (20.1), (20.7) and (2) we find that, for every h ∈ H and s ∈ S,

λ
[n]
h (s) = DxC

h
(s)u

[n]
h (x

[n]
h ) → DxC

h
(s)uh(xh) = λh(s) ∈ R++,

since DxC
h

(s)u
[n]
h → DxC

h
(s)uh uniformly on compact subsets of R

G
++. Then, from (20.1) and (2), it follows

that, for every s ∈ S,

p[n](s) =
Dxh(s)u

[n]
h (x

[n]
h )

λ
[n]
h (s)

→
Dxh(s)uh(xh)

λh(s)
= p(s) ∈ R

C
++

and thus (p[n])n∈N converges to an element of R
G
++. Fix now a ∈ A and consider the sequence (qa,[n])n∈N.

We claim that it converges if there exist h ∈ H and a sequence (nk)k∈N in N such that, for every k ∈ N,

z
a,[nk]
h + (1 + t

a,[nk]
h )σ

a,[nk]
h (p[nk], q[nk]) > 0.

Indeed, if this is true, from (20.3) and (20.4) we get

qa,[nk] =
1

λ
[nk]
h (0)

S∑

s=1

λ
[nk]
h (s)pC,[nk](s)ya,[nk](s) →

1

λh(0)

S∑

s=1

λh(s)pC(s)ya(s) = qa.

In order to show the claim, assume by contradiction that, for every h ∈ H, there exists νh ∈ N such that,
for every n ≥ νh,

z
a,[n]
h + (1 + t

a,[n]
h )σ

a,[n]
h (p[n], q[n]) = 0.

Summing up on h ∈ H, and using (20.6), we find

0 =

H∑

h=1

z
a,[n]
h +

H∑

h=1

(1 + t
a,[n]
h )σ

a,[n]
h (p[n], q[n]) =

H∑

h=1

(1 + t
a,[n]
h )σ

a,[n]
h (p[n], q[n]).

From (10), the right hand side of the above equality has to be positive. Then the contradiction is found
and the convergence of (q[n])n∈N to an element of R

A follows. Fix now h ∈ H and a ∈ A and consider the

sequence (z
a,[n]
h )n∈N. For every n ∈ N, we have

−(1 + t
a,[n]
h )σ

a,[n]
h (p[n], q[n]) ≤ z

a,[n]
h = −

∑

h′∈H,h′ 6=h

z
a,[n]
h′ ≤

∑

h′∈H,h′ 6=h

(1 + t
a,[n]
h′ )σ

a,[n]
h′ (p[n], q[n]).
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Since p[n] → p, q[n] → q, σ
a,[n]
h → σa

h uniformly on compact subsets of R
G
++ ×R

A and t[n] → t, there exist

Ka
h, K

a

h ∈ R such that, for every n ∈ N,

Ka
h ≤ z

a,[n]
h ≤ K

a

h.

Thus z
a,[n]
h → za

h and the convergence of (z[n])n∈N to an element of R
AH is proved.

Finally, fixed h ∈ H and a ∈ A, let us study the convergence of the sequence (µ
a,[n]
h )n∈N. If za

h + (1 +

t
a

h)σa
h(p, q) > 0, then by (20.4) it follows that µ

a,[n]
h = 0 if n is large enough and the convergence is proved.

If instead za
h + (1 + t

a

h)σa
h(p, q) = 0, then from (20.3) we obtain

µ
a,[n]
h = λ

[n]
h (0)qa,[n] −

S∑

s=1

λ
[n]
h (s)pC,[n](s)ya,[n](s) → λh(0)qa −

S∑

s=1

λh(s)pC(s)ya(s) = µa
h,

and the convergence of (µ[n])n∈N to an element of R
AH follows. The proof is complete.

Lemma 10. The set

D1 = {E ∈ E : F0(ξ, E) = 0 ⇒ ∀h ∈ H, ∀a ∈ A, max{µa
h, z

a
h + σa

h(p, q)} > 0}

is open and dense in E .

Proof. We have

D1 = E \ π0

( ⋃

a∈A,h∈H

∆a,h
)

where, for every a ∈ A and h ∈ H,

∆a,h = {(ξ, E) : F0(ξ, E) = 0 and max{µa
h, z

a
h + σa

h(p, q)} = 0} .

Immediately we have that ⋃

a∈A,h∈H

∆a,h

is closed in F−1
0 (0). Since π0 is proper,

π0

( ⋃

a∈A,h∈H

∆a,h
)

is closed in E and then D1 is open in E .
Fix now (u, Y, σ) ∈ U × Y × Σ and define

F̃ : Ξ × R
GH
++ → R

dim(Ξ), (ξ, e) 7→ F̃(ξ, e) = F0(ξ, e, u, Y, σ).

In order to prove the density of D1 in E , we note that it is sufficient to show that, for every (u, Y, σ) ∈
U × Y × Σ, the set

O1 (u, Y, σ) =
{
e ∈ R

GH
++ : F̃(ξ, e) = 0 ⇒ ∀h ∈ H, ∀a ∈ A, max{µa

h, z
a
h + σa

h(p, q)} > 0
}

is dense in R
GH
++ .

Let us call Qh the family of all possible tri-partitions9 Qh =
{
Q

(1)
h ,Q

(2)
h ,Q

(3)
h

}
of the set A and let

Q
(i)
h = |Q

(i)
h |, for i ∈ {1, 2, 3}. Define then Q =×

h∈H
Qh, with generic element Q = (Qh)h∈H, and

Q∗ = {Q ∈ Q : ∃h ∈ H such that Q
(3)
h 6= ∅}.

Fixed Q ∈ Q∗, define k (Q) =
∑

h∈HQ
(3)
h > 0 and

F̃Q : Ξ × R
GH
++ → R

dim(Ξ)+k(Q),

9In this context, the term partition is used in a loose manner, as its elements are allowed to be the empty set.
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F̃Q(ξ, e) =




(23.1) Dxh(s)uh(xh) − λh(s)p(s)

(23.2)
−p(0)(xh(0) − eh(0)) − qzh

−p(s)(xh(s) − eh(s)) + pC(s)y(s)zh, s ∈ {1, . . . , S}

(23.3) −λh(0)qa +
S∑

s=1
λh(s)pC(s)ya(s) + µa

h

(23.4) µa
h, h ∈ H, a ∈ Q

(1)
h ∪Q

(3)
h

(23.5) za
h + σa

h(p, q), h ∈ H, a ∈ Q
(2)
h ∪Q

(3)
h

(23.6)
H∑

h=1

(
x
\
h − e

\
h

)

(23.7)
H∑

h=1

zh

(23.8) pC(s) − 1




(23)

We are going to show that 0 is a regular value for F̃Q. If that is the case, from Theorem 7, there exists
OQ

1 (u, Y, σ) full measure subset of R
GH
++ such that, for every e ∈ OQ

1 (u, Y, σ), 0 is a regular value for

F̃Q(·, e), that is, there are no solutions to F̃Q(ξ, e) = 0. It is immediate to prove that

O1(u, Y, σ) ⊇
⋂

Q∈Q∗

OQ
1 (u, Y, σ)

and thus O1(u, Y, σ) has full measure in R
GH
++ and then it is dense therein.

Let us finally show that, for every Q ∈ Q∗, 0 is a regular value for F̃Q. A suitable submatrix of the
Jacobian matrix of the function F̃Q (ξ, e) , that we still denote by DF̃Q (ξ, e) , is presented in the table
below. The components of the function are listed in the first column, the variables with respect to which
derivatives are taken are listed in the first row, and in the remaining bottom right corner the corresponding
partial Jacobian is displayed.
The rank computation for DF̃Q (ξ, e) is performed through row and column operations. The starred
matrices in the same super-row have the property that some of (possibly all) their columns are used to
obtain a full row rank matrix that we employ to “clean up” its super-row, since all the other elements of
its super-column are null. The symbol ⊚ indicates instead a possibly nonzero matrix whose values are
insignificant for our argument.
A suitable order in which the appropriate elementary super-column operations have to be performed is
the one indicated in the last column of the table.

11



T
h
e

ab
ove

m
eth
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ology

an
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otation

w
ill

b
e

u
sed

in
several

ran
k

com
p
u
tation

s
th

rou
gh

ou
t

th
e

p
ap

er.

x1 λ1 z1 µ
(1,3)
1 µ

(2)
1 e

\
1 e⋄1 . . . xH λH zH µ

(13)
H

µ
(2)
H

e
\
H

e⋄
H

pC

(23.1)1 D2u1∗ −Φ(p)T ⊚ 3

(23.2)1 −Φ(p)
[
−q
Y

]
Φ\(p) I∗ ⊚ 1

(23.3)1

[
−q
Y

]T
∗ ⊚ ⊚ ⊚ 4

(23.4)1 I∗ 5

(23.5)1 I(A, Q
(2)
1 ∪ Q

(3)
1 )T ⊚

.

.

.

.
.
.

.

.

.

.

.

.

(23.1)H D2uH∗ −Φ(p)T ⊚ 3

(23.2)H −Φ(p)
[
−q
Y

]
Φ\(p) I∗ ⊚ 1

(23.3)H

[
−q
Y

]T
∗ ⊚ ⊚ ⊚ 4

(23.4)H I∗ 5

(23.5)H I(A, Q
(2)
H

∪ Q
(3)
H

)T ⊚

(23.6) L −I∗ . . . L −I 2

(23.7) I . . . I

(23.8) I∗ 6

(24)

In
th

e
p
rev

iou
s

tab
le,

for
h
∈
H
,
w

e
h
ave

set

µ
(i,j

)
h

=
(µ

ah
)
a
∈
Q

(
i
)

h
∪
Q

(
j
)

h

,
i,j

∈
{1
,2
,3}

.
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Moreover I is an identity matrix of appropriate dimension, e⋄h =
(
eC
h (s)

)
s∈S

∈ R
S+1
++ ,

Φ(p) =



p1(0) · · · pC−1(0) 1

. . .

p1(S) · · · pC−1(S) 1




(S+1)×G

Φ\(p) =



p1(0) . . . pC−1(0)

. . .

p1(S) . . . pC−1(S)




(S+1)×(G−(S+1))

L =



IC−1 0

. . .

IC−1 0




G−(S+1)×G

where IC−1 is the identity matrix of dimension C − 1. Given two finite sets S and T, with S ⊇ T, we have
denoted by

I(S, T ) = (δst)s∈S, t∈T ∈ R
|S| × R

|T |

the matrix with generic element δst = 1, if s = t, and δst = 0, else. Notice that rank I(S, T ) = |T |.
The following is the table remaining after the first six steps of our procedure:

z1 . . . zH

(23.5)1 I(A,Q
(2)
1 ∪ Q

(3)
1 )T

..

.
. . .

(23.5)H I(A,Q
(2)
H

∪ Q
(3)
H

)T

(23.7) I . . . I

Observe now that
∀a ∈ A, ∃h(a) ∈ H such that za

h(a) + σa
h(a)(p, q) > 0. (25)

Indeed, otherwise we would find that there exists a ∈ A such that, for every h ∈ H, za
h + σa

h(p, q) = 0.
Hence 0 =

∑
h z

a
h = −

∑
h σ

a
h(p, q) < 0, a contradiction. Then, considering for any a ∈ A the column

in correspondence to za
h(a), we notice that with all such columns it is possible to get an identity matrix

on the last super-row, that does not interfere with the nonnull columns of the matrices in super-rows

(23.5)1, . . . , (23.5)H . Since, for every h ∈ H, I(A,Q
(2)
h ∪ Q

(3)
h )T has full row rank, the fullness of rank for

DF̃Q (ξ, e) thus follows.

Let us now introduce the following objects by using a generality which will be useful later. Call Ph

the family of all possible bi-partitions10 Ph =
{
P

(1)
h ,P

(2)
h

}
of the set A and let P

(i)
h = |P

(i)
h |, for i ∈ {1, 2}.

Define P =×
h∈H

Ph, with generic element P = (Ph)h∈H . Fixed P ∈ P, consider

FP : Ξ × V × T → R
dim(Ξ),

10Also in this case the term partition in used in a loose form, as some of its elements are allowed to be the empty set.
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FP(ξ, E, t) =




(26.1) Dxh(s)uh(xh) − λh(s)p(s)

(26.2)
−p(0)(xh(0) − eh(0)) − qzh

−p(s)(xh(s) − eh(s)) + pC(s)y(s)zh, s ∈ {1, . . . , S}

(26.3) −λh(0)qa +
S∑

s=1
λh(s)pC(s)ya(s) + µa

h

(26.4) µa
h, h ∈ H, a ∈ P

(1)
h

(26.5) za
h + (1 + tah)σa

h(p, q), h ∈ H, a ∈ P
(2)
h

(26.6)
H∑

h=1

(
x
\
h − e

\
h

)

(26.7)
H∑

h=1

zh

(26.8) pC(s) − 1




(26)

where V has been defined in (14).

Lemma 11. For every P ∈ P, FP ∈ C1(Ξ × V × T ,Rdim(Ξ)).

Proof. Of course FP is continuous. We have to show that

dFP : (Ξ × V × T ) × (Rdim(Ξ) × V × T ) → R
dim(Ξ)

is well defined and continuous. Consider then

(ξ, E, t) ∈ Ξ × V × T , (ξ∗, E∗, t∗) ∈ R
dim(Ξ) × V × T .

It suffices to show that

lim
ε→0

FP(ξ + εξ∗, E + εE∗, t+ εt∗) −FP(ξ, E, t)

ε

exists and it is continuous and that can be easily done.

Lemma 12. The set

D2 =
{
E ∈ E : ∀P ∈ P, FP(ξ, E, 0) = 0 ⇒ detDξF

P (ξ, E, 0) 6= 0
}

is open and dense in E.

Proof. Openness follows from continuity of the considered functions. In order to show density, it is
sufficient to prove that, for every (u, Y, σ) ∈ U × Y × Σ, the set

O2(u, Y, σ) =
{
e ∈ R

GH
++ : (e, u, Y, σ) ∈ D2

}

is dense in R
GH
++ . Fix (u, Y, σ) and P ∈ P, and define

F̃P : Ξ × R
GH
++ → R

dim(Ξ),
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F̃P(ξ, e) =




(27.1) Dxh(s)uh(xh) − λh(s)p(s)

(27.2)
−p(0)(xh(0) − eh(0)) − qzh

−p(s)(xh(s) − eh(s)) + pC(s)y(s)zh, s ∈ {1, . . . , S}

(27.3) −λh(0)qa +
S∑

s=1
λh(s)pC(s)ya(s) + µa

h

(27.4) µa
h, h ∈ H, a ∈ P

(1)
h

(27.5) za
h + σa

h(p, q), h ∈ H, a ∈ P
(2)
h

(27.6)
H∑

h=1

(
x
\
h − e

\
h

)

(27.7)
H∑

h=1

zh

(27.8) pC(s) − 1




(27)

We are going to prove that, for every P ∈ P, 0 is a regular value for F̃P, so that

OP (u, Y, σ) =
{
e ∈ R

GH
++ : 0 is a regular value for F̃P(·, e)

}

is a full measure subset of R
GH
++ . Since

O2 (u, Y, σ) ⊇
⋂

P∈P

OP (u, Y, σ) ,

we get the desired result. The rank computation for a suitable submatrix of the Jacobian matrix of the
function F̃P (ξ, e) is performed through row and column operations, similarly to the proof of Lemma 10,
and it is presented in the table below.
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x
1

λ
1

z
1

µ
(
1
)

1
µ
(
2
)

1
e
\ 1

e
⋄ 1

.
.

.
x

H
λ

H
z

H
µ
(
1
)

H
µ
(
2
)

H
e
\ H

e
⋄ H

p
C

(
2
7

.1
)
1

D
2

u
1
∗

−
Φ

(
p
)
T

⊚
3

(
2
7

.2
)
1

−
Φ

(
p
)

[ −
q

Y

]
Φ
\
(
p
)

I
∗

⊚
1

(
2
7

.3
)
1

[ −
q

Y

] T
∗

⊚
⊚

⊚
4

(
2
7

.4
)
1

I
∗

5

(
2
7

.5
)
1

I
(
A

,
P

(
2
)

1
)
T

⊚

. . .

.
.
.

. . .

. . .

(
2
7

.1
)
H

D
2

u
H

∗
−

Φ
(
p
)
T

⊚
3

(
2
7

.2
)
H

−
Φ

(
p
)

[ −
q

Y

]
Φ
\
(
p
)

I
∗

⊚
1

(
2
7

.3
)
H

[ −
q

Y

] T
∗

⊚
⊚

⊚
4

(
2
7

.4
)
H

I
∗

5

(
2
7

.5
)
H

I
(
A

,
P

(
2
)

H
)
T

⊚

(
2
7
.6

)
L

−
I
∗

.
.

.
L

−
I

2

(
2
7
.7

)
I

.
.

.
I

(
2
7
.8

)
I
∗

6

The symbols have the same meaning as in (24).
The remaining steps are exactly as in the proof of Lemma 10, with the only difference that, for every

h ∈ H, the matrix I(A,P
(2)
h )T has now replaced I(A,Q

(2)
h ∪ Q

(3)
h )T . Condition (25) however still holds

and thus we can conclude in the same manner.

Proof of Theorem 3. Define D = D1 ∩ D2. Of course, D is open and dense in E and D is the set of
economies E ∈ E such that, for every ξ ∈ Ξ with F0(ξ, E) = 0, the following conditions hold:

∀h ∈ H,∀a ∈ A either za
h + σa

h(p, q) > 0 or µa
h > 0,
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F0 is C1 in a neighborhood of (ξ, E),

detDξF0(ξ, E) 6= 0.

We are then left with showing that for any E∗ ∈ D all conditions in Theorem 3 are satisfied.
From Theorem 2 and Lemma 9, we get

{ξ ∈ Ξ : F0(ξ, E
∗) = 0} = {ξi∗}k

i=1, (28)

where k is a positive integer. Then, from Theorem 8, there exist an open neighborhood V (E∗) ⊆ E of
E∗ and, for every i ∈ {1, . . . , k} , an open neighborhood O(ξi∗) ⊆ Ξ of ξi∗ and ϕi : V (E∗) → O(ξi∗) such
that:

ϕi ∈ C1, ϕi(E
∗) = ξi∗, and O(ξi∗) ∩O(ξj∗) = ∅, for i 6= j , (29)

{
(ξ, E) ∈ O(ξi∗) × V (E∗) : F0(ξ, E) = 0

}
=

{
(ξ, E) ∈ O(ξi∗) × V (E∗) : ξ = ϕi(E)

}
. (30)

Moreover, again from Lemma 9,

{(ξ, E) ∈ Ξ × V (E∗) : F0(ξ, E) = 0} =

k⋃

i=1

{(ξ, E) ∈ Ξ × V (E∗) : ξ = ϕi(E)} . (31)

Of course, (28), (29), (30) and (31) imply (15), (16), (17) and (18), respectively.

A.3 Generic Pareto Suboptimality of equilibria

Proof of Theorem 4. The existence of the set D△ follows by a transversality argument. More precisely,
let us fix P ∈ P. We recall that, given E ∈ E , if ξ = (x, λ, z, µ, p, q) ∈ Ξ is such that FP(ξ, E, 0) = 0, then
x is a Pareto Optimal allocation if and only if for every s, s′ ∈ S and h, h′ ∈ H, it holds that

λh(s)

λh(s′)
=

λh′(s)

λh′(s′)
.

Thus we are going to show that generically this cannot happen when A < S. More precisely, we prove
that the set

D△,P =
{
E ∈ D : FP(ξ, E, 0) = 0 ⇒ ∃s, s′ ∈ S and h, h′ ∈ H with

λh(s)

λh(s′)
6=

λh′(s)

λh′(s′)

}

is open and dense in D and thus in E , so that the desired open and dense set D△ can then be defined as

D△ =
⋂

P∈P

D△,P.

Openness of D△,P immediately follows, while, in order to show density, it is sufficient to prove that, for
every (u, Y, σ) ∈ U × Y × Σ, the set

O△,P(u, Y, σ) =
{
e ∈ R

GH
++ : (e, u, Y, σ) ∈ D△,P

}

is dense in R
GH
++ . Fix then (u, Y, σ) ∈ U × Y × Σ. We observe that, since rankY = A < S, without loss

of generality, we can assume that the matrix obtained by Y deleting the first row, say Y1, still has rank
equal to A. Consider then the subset of O△,P(u, Y, σ) given by

O△,P
1 (u, Y, σ) =

{
e ∈ R

GH
++ : FP(ξ, e, u, Y, σ, 0) = 0 ⇒ λH(1) −

λ1(1)

λ1(0)
λH(0) 6= 0

}
.

We will show that such set is dense in R
GH
++ by using Theorem 7. The proof thatD(ξ,e)

[
FP (ξ, e, u, Y, σ, 0)

λH(1) − λ1(1)
λ1(0)

λH(0)

]

has full row rank is performed through row and column operations, similarly to the proof of Lemma 10,
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and it is presented in the table below.
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x1 λ1 z1 µ
(1)
1 µ

(2)
1 e

\
1 e⋄1 . . . xH λH zH µ

(1)
H

µ
(2)
H

e
\
H

e⋄
H

pC

(26.1)1 D2u1∗ −Φ(p)T ⊚ 3

(26.2)1 −Φ(p)
[
−q
Y

]
Φ\(p) I∗ ⊚ 1

(26.3)1

[
−q
Y

]T
∗ ⊚ ⊚ ⊚ 4

(26.4)1 I∗ 5

(26.5)1 I(A, P
(2)
1 )T ⊚

.

.

.

.
.
.

.

.

.

.

.

.

(26.1)H D2uH∗ −Φ(p)T ⊚ 3

(26.2)H −Φ(p)
[
−q
Y

]
Φ\(p) I∗ ⊚ 1

(26.3)H

[
−q
Y

]T
∗ ⊚ ⊚ ⊚ 4

(26.4)H I∗ 5

(26.5)H I(A, P
(2)
H

)T ⊚

(26.6) L −I∗ . . . L −I 2

(26.7) I . . . I

(26.8) I∗ 6

λH (1) −
λ1(1)
λ1(0)

λH (0) ⊚

(
−

λ1(1)
λ1(0)

, 1, 0, . . . , 0

)
∗ 7
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The symbols have the same meaning as in (24).
Notice that in Steps 4 and 7 we use the fact that rank Y1 = A < S. Indeed, there exist A columns of Y T

1

which allow to clean up (33.3)H and, in particular, they permit to cancel −qT and the remaining columns

of Y T . Moreover the columns of Y T
1 do not interfere with the vector

(
− λ1(1)

λ1(0)
, 1, 0, . . . , 0

)
in the last row.

Then, in Step 7, we can exploit the positive term -λ1(1)
λ1(0)

to clean up the corresponding row.

The remaining steps are exactly as in the proof of Lemma 10, with the only difference that, for every

h ∈ H, the matrix I(A,P
(2)
h )T has now replaced I(A,Q

(2)
h ∪ Q

(3)
h )T . Condition (25) however still holds

and thus we can conclude in the same manner.

A.4 Generic Pareto Improving

Proof of Theorem 5. We stress that along the present proof we need the stronger Assumptions (5), (6)

and (12). Let us define Λ̃(ξ, E) in analogy with (19). More precisely11, let

P : Ξ × E → (P(A))2H , P(ξ, E) =
(
P

(1)
h (ξ, E),P

(2)
h (ξ, E)

)
h∈H

,

with
P

(1)
h (ξ, E) = {a ∈ A : µa

h = 0} and P
(2)
h (ξ, E) = {a ∈ A : za

h + σa
h(p, q) = 0} .

Define then
Λ̃ : Ξ × E → N, Λ̃(ξ, E) =

∑

h∈H

P
(2)
h (ξ, E),

where, for every (ξ, E) ∈ Ξ × E , P
(2)
h (ξ, E) = |P

(2)
h (ξ, E)|.

Notice that, given E ∈ E and θ ∈ Θ(E), if ξ ∈ Ξ is the extended equilibrium associated with θ, then

Λ̃(ξ, E) = Λ(θ,E). Moreover, if (ξ, E) ∈ Ξ ×D and F0(ξ, E) = 0, then

P
(1)
h (ξ, E) ∪ P

(2)
h (ξ, E) = A , P

(1)
h (ξ, E) ∩ P

(2)
h (ξ, E) = ∅ .

Let us introduce now

Γ : Ξ × E × T → R
H , Γ (ξ, E, t) = (u1(x1), . . . , uH(xH)),

PH =
{
P ∈ P :

∑

h∈H

P
(2)
h ≥ H

}
,

D♦ =

{
E ∈ D : ∀P ∈ PH ,

{
FP(ξ, E, 0) = 0
F0(ξ, E) = 0

⇒ rank D(ξ,t)

[ FP

Γ

]
(ξ, E, 0) = dim(Ξ) +H

}
.

Define also

WPI =

{
(ξ, E) ∈ Ξ × E :

F0(ξ, E) = 0 and, for every open neighborhood V(0) ⊆ T of 0,
∃t∗ ∈ V(0), ξ∗ ∈ Ξ,F(ξ∗, E, t∗) = 0, (uh(x∗h))

h∈H ≫ (uh(xh))h∈H

}

and
W =

{
(ξ, E) ∈ Ξ ×D♦ : F0(ξ, E) = 0, Λ̃(ξ, E) ≥ H

}
.

It is immediate to prove that if W ⊆ WPI , then the conclusions of Theorem 5 holds. In fact, if

(θ∗, E∗) ∈
{
(θ,E) ∈ Θ ×D♦ : θ ∈ Θ(E),Λ(θ,E) ≥ H

}

and ξ∗ is the extended equilibrium associated with θ∗, then (ξ∗, E∗) ∈ W ⊆ WPI , so that (θ∗, E∗) fulfills
the conclusions of Theorem 5.
In order to check that W ⊆ WPI , let (ξ∗, E∗) ∈ W. By definition of W, Λ̃(ξ∗, E∗) ≥ H and then
P(ξ∗, E∗) ∈ PH . Moreover, FP(ξ∗,E∗)(ξ∗, E∗, 0) = 0 and, since E∗ ∈ D2,

detDξF
P(ξ∗,E∗) (ξ∗, E∗, 0) 6= 0.

11Given a set S, we denote by P(S) its power set.
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Hence, by the implicit function theorem, there exists a neighborhood V (0) ⊆ T of 0 and a C1 function

ξ : V (0) → Ξ, t 7→ ξ(t),

such that, for t ∈ V (0), FP(ξ∗,E∗)(ξ(t), E∗, t) = 0 and ξ(0) = ξ∗. Then, in order to prove that (ξ∗, E∗) ∈
WPI , it is sufficient to show that Γ(ξ(t)) is essentially surjective12 at 0. This is true if DtΓ(ξ(t))|t=0 is
surjective and, since by the implicit function theorem,

DtΓ(ξ(t))|t=0 = DξΓ(ξ∗)Dtξ
∗ = DξΓ(ξ∗)[−DξF

P(ξ∗,E∗)(ξ∗, E∗, 0)]−1DtF
P(ξ∗,E∗)(ξ∗, E∗, 0),

then by the Gaussian elimination in block form (cf. Villanacci et al. (2002), Chapter 1, Lemma 8), we
find that DξΓ(ξ∗)[−DξF

P(ξ∗,E∗)(ξ∗, E∗, 0)]−1DtF
P(ξ∗,E∗)(ξ∗, E∗, 0) has full rank if and only if

[
DξF

P(ξ∗,E∗)(ξ∗, E∗, 0) DtF
P(ξ∗,E∗)(ξ∗, E∗, 0)

DξΓ(ξ∗) 0

]
= D(ξ,t)

[
FP(ξ∗,E∗)

Γ

]
(ξ∗, E∗, 0)

has full row rank. But this holds true thanks to the definition of D♦, since FP(ξ∗,E∗)(ξ∗, E∗, 0) = 0.
Then we are left with proving that D♦ is open and dense in E . Set, for every P ∈ PH ,

D♦,P =

{
E ∈ D :

{
FP(ξ, E, 0) = 0
F0(ξ, E) = 0

⇒ rank D(ξ,t)

[ FP

Γ

]
(ξ, E, 0) = dim(Ξ) +H

}
.

Since
D♦ =

⋂

P∈PH

D♦,P

and since D is dense in E , it is sufficient to show that, for every P ∈ PH , D♦,P is open and dense in D.
Let us then fix P ∈ PH and consider D♦,P.

As regards the openness of D♦,P, we notice that it is the complement in D of π̃0(M), where

M =

{
(ξ, E) ∈ Ξ ×D :

FP(ξ, E, 0) = 0, F0(ξ, E) = 0 and

rank D(ξ,t)

[ FP

Γ

]
(ξ, E, 0) < dim(Ξ) +H

}
,

and
π̃0 : F−1

0 (0) ∩ (Ξ ×D) → D, (ξ, E) 7→ π̃0(ξ, E) = E.

Since the properness of π̃0 easily follows by Lemma 9, we just have to show that M is closed in Ξ × D.
But it comes from the fact that FP is continuous on Ξ ×D, and thus (FP)−1(0) is closed in Ξ ×D, and
by observing that, in order to have

rank D(ξ,t)

[ FP

Γ

]
(ξ, E, 0) < dim(Ξ) +H,

the determinants of all square submatrices of

D(ξ,t)

[ FP

Γ

]
(ξ, E, 0)

of dimension dim(Ξ) +H have to be zero. Recall indeed that such determinants are continuous functions
on Ξ ×D.

We prove the density of D♦,P in D by showing that for every E∗ ∈ D there exists a sequence
(
E[n]

)
n∈N

in D♦,P such that E[n] → E∗. Fix then E∗ = (e∗, u∗, Y ∗, σ∗) ∈ D and consider the set

{
ξi∗

}k

i=1
= {ξ ∈ Ξ : F0(ξ, E

∗) = 0} .

12We recall that a function f : M → N, with M and N topological spaces, is essentially surjective at x ∈ M if the image
of any open neighborhood of x in M contains an open neighborhood of f(x) in N.
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For every i ∈ {1, . . . , k}, let O
(
ξi∗

)
⊆ Ξ be open sets such that ξi∗ ∈ O

(
ξi∗

)
and O

(
ξi∗

)
∩ O

(
ξj∗

)
= ∅,

for i 6= j . Moreover, with any of such ξi∗ it is uniquely associated a partition P(ξi∗, E∗). Let us define

P(E∗) =
{
P(ξi∗, E∗)

}k

i=1
.

Notice that, by continuity, in a suitable neighborhood V (E∗) ⊆ D of E∗ we have that

(ξ, E) ∈ Ξ × V (E∗), F0(ξ, E) = 0 ⇒ ξ ∈
k⋃

i=1

O
(
ξi∗

)
and P(ξ, E) ∈ P(E∗).

If P 6∈ P(E∗), then it is immediate to conclude that E∗ ∈ D♦,P.

If P ∈ P(E∗), we have to argue as follows. For simplicity, we assume that, for every h ∈ H, P
(2)
h 6= ∅.

The case in which there exists ĥ ∈ H such that P
(2)

ĥ
= ∅ can be handled similarly.

Let us select exactly a tool for each consumer: for instance, for any h ∈ H, we can set

ah = min{a ∈ A : a ∈ P
(2)
h } (32)

and work with the H tools ta1
1 , . . . , t

aH

H .

For i ∈ {1, . . . , k} and h ∈ H, let xi∗
h ∈ R

G
++ be the consumption of household h associated with ξi∗ and

let
{
Bi

h

}k

i=1
be a set of open balls of R

G
++ such that xi∗

h ∈ Bi
h and Bi

h ∩ Bj
h = ∅, for i 6= j. In particular

we can choose
{
Bi

h

}k

i=1
so that there exist pairwise disjoint open balls

{
B̂i

h

}k

i=1
of R

G
++ with

Bi
h ⊆ Cl

(
Bi

h

)
⊆ B̂i

h, ∀i ∈ {1, . . . , k} ,

where Cl
(
Bi

h

)
denotes the closure of Bi

h in R
G
++. Let then ρh ∈ C∞(RG

++, [0, 1]) be such that, for every

xh ∈
⋃k

i=1B
i
h, ρh(xh) = 1 while, for every xh ∈ R

G
++ \

⋃k
i=1 B̂

i
h, ρh(xh) = 0.

Let SG be the set of the G×G symmetric matrices with real elements13 and let N (0) be a neighborhood
of 0 ∈ (SG)H such that, for every A = (Ah)h∈H ∈ N (0), it holds that:

• for every h ∈ H, the function

uAh

h (xh) = u∗h(xh) +
1

2
ρh(xh)

k∑

i=1

[(
xh − xi∗

h

)
Ah

(
xh − xi∗

h

)]

satisfies Assumptions (1)–(4);

• the economy (e∗, uA, Y ∗, σ∗) ∈ V (E∗), where uA =
(
uAh

h

)
h∈H

.

Note that the first condition follows from Villanacci et al. (2002), Chapter 15, Lemma 25, and the second
one is trivial.

For any P ∈ P(E∗), we can then introduce the functions

F̂P :

k⋃

i=1

O
(
ξi∗

)
×N (0) × T → R

dimΞ,

13Notice that SG can be identified with R
G(G+1)

2 .
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F̂P(ξ,A, t) =




(33.1) Dxh(s)

(
u∗h(xh) + 1

2ρh(xh)
k∑

i=1

[(
xh − xi∗

h

)
Ah

(
xh − xi∗

h

)])
− λh(s)p(s)

(33.2)
−p(0)(xh(0) − e∗h(0)) − qzh

−p(s)(xh(s) − e∗h(s)) + pC(s)y∗(s)zh, s ∈ {1, . . . , S}

(33.3) −λh(0)qa +
S∑

s=1
λh(s)pC(s)y∗a(s) + µa

h

(33.4) µa
h, h ∈ H, a ∈ P

(1)
h

(33.5) za
h + (1 + tah)σ∗a

h (p, q), h ∈ H, a ∈ P
(2)
h

(33.6)
H∑

h=1

(
x
\
h − e

∗\
h

)

(33.7)
H∑

h=1

zh

(33.8) pC(s) − 1




(33)
and

Γ̂ :

k⋃

i=1

O
(
ξi∗

)
×N (0) × T → R

H ,

Γ̂(ξ,A, t) =
[
u∗h(xh) +

1

2
ρh(xh)

k∑

i=1

[(
xh − xi∗

h

)
Ah

(
xh − xi∗

h

)] ]
(34)

Consider then the function

ψP :

k⋃

i=1

O
(
ξi∗

)
× R

dim(Ξ)+H ×N (0) → R
dim(Ξ)+dim(Ξ)+AH+1,

ψP(ξ, c, A) =




F̂P(ξ,A, 0)

(
D(ξ,t)

[ F̂P

Γ̂

]
(ξ,A, 0)

)T

c

1
2cc− 1




If we show that, for almost all A ∈ N (0), there is no (ξ, c) such that

ψP(ξ, c, A) = 0,

we are done. In fact, if it is the case, there exists a sequence
(
A[n]

)
n∈N

in N (0) converging to 0 such that, for

every n ∈ N, when F̂P(ξ,A[n], 0) = 0 then D(ξ,t)

[ F̂P

Γ̂

]
(ξ,A[n], 0) has full rank. As

(
A[n]

)
n∈N

is in N (0),

then the sequence of economies E[n] = (e∗, uA[n]

, Y ∗, σ∗) → E∗ and, since F̂P(ξ,A[n], 0) = FP(ξ, E[n], 0)

and Γ̂(ξ,A[n], 0) = Γ(ξ, E[n], 0), we obtain that
(
E[n]

)
n∈N

is in D♦,P, as desired.

We are left with showing that, for almost all A ∈ N (0), there is no (ξ, c) such that

ψP(ξ, c, A) = 0.

Let
c =

(
(cxh

, cλh
, czh

, cµh
)
h∈H , cp\ , cq, cpC , ct

)

∈ R
GH × R

(S+1)H × R
AH × R

AH × R
G−(S+1) × R

A × R
S+1 × R

H .
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Since (e∗, uA, Y ∗, σ∗) ∈ V (E∗) ⊆ D2, then (ξ, c, A) satisfies ψP(ξ, c, A) = 0 if and only if it satisfies

ψ̃P(ξ, c, A) = 0, where

ψ̃P :

k⋃

i=1

O
(
ξi∗

)
× R

dim(Ξ)+H ×N (0) → R
dim(Ξ)+dim(Ξ)+AH+1,

ψ̃P(ξ, c, A) =




F̂P(ξ,A, 0)

(
D(ξ,t)

[ F̂P

Γ̂

]
(ξ,A, 0)

)T

c

1
2ctct − 1




Then we have to prove that, for almost all A ∈ N (0), there is no (ξ, c) such that ψ̃P(ξ, c, A) = 0. Notice
that we can obtain the desired result showing that, for almost all A ∈ N (0), there is no (ξ, c) such that
ψ̌P(ξ, c, A) = 0, where

ψ̌P :
k⋃

i=1

O (ξ∗i ) × R
dim(Ξ)+H ×N (0) → R

dim(Ξ)+dim(Ξ)+H+1,

ψ̌P(ξ, c, A) =




F̂P(ξ,A, 0)

(
D(ξ,t̃)

[ F̂P

Γ̂

]
(ξ,A, 0)

)T

c

1
2ctct − 1




and t̃ = (ta1
1 , . . . , t

aH

H ) ∈ R
H .

In what follows, for every h ∈ H, i = 1, 2, we define µ
(i)
h = (µa

h)
a∈P

(i)
h

.

The computation of the matrix D(ξ,t̃)

[ F̂P

Γ̂

]
(ξ,A, 0) is the following:
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x1 λ1 z1 µ
(1)
1 µ

(2)
1 . . . xH λH zH µ

(1)
H

µ
(2)
H

p\ pC q t
a1
1 . . . t

aH
H

(33.1)1 D2u1 + A1 −Φ(p)T −Λ̃1 ⊚

(33.2)1 −Φ(p)
[
−q
Y

]
⊚ ⊚

[
−z1
0

]

(33.3)1

[
−q
Y

]T
⊚ I(A, P

(2)
1 ) ⊚ −λ1(0)I

(33.4)1 I

(33.5)1 I(A, P
(2)
1 )T ⊚ ⊚ ⊚ Σa1

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

(33.1)H D2uH + AH −Φ(p)T −Λ̃H ⊚

(33.2)H −Φ(p)
[
−q
Y

]
⊚ ⊚

[
−zH

0

]

(33.3)H

[
−q
Y

]T
⊚ I(A, P

(2)
H

) ⊚ −λH (0)I

(33.4)H I

(33.5)H I(A, P
(2)
H

)T ⊚ ⊚ ⊚ ΣaH
(33.6) L . . . L

(33.7) I . . . I

(33.8) I

(34)1 Du1

.

.

.

.
.
.

(34)H DuH
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where

Λ̃h =




λh(0)IC−1

0
. . .

λh(S)IC−1

0




G×(G−(S+1))

and Σah
∈ R

P 2
h is a vector whose components are all null except for the term σah

h (p, q) in position ah,

as defined in (32), which is positive by (12). The other symbols have the same meaning as in (24). In
particular, we recall that, given two finite sets S and T, with S ⊇ T, I(S, T ) = (δst)s∈S, t∈T ∈ R

|S| × R
|T |

is a matrix with generic element δst = 1, if s = t, and δst = 0, else.

By neglecting some rows and columns, we find that D(ξ,t̃)

[ F̂P

Γ̂

]
(ξ,A, 0) has full row rank if and only if

the following matrix, that we call M(ξ,A), has full row rank.
In the first row and the second column of the table we indicate the dimension of the corresponding
super-columns and super-rows.
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G S + 1 A P
(2)
1 . . . G S + 1 A P

(2)
H

G − (S + 1) A 1 . . . 1

x1 λ1 z1 µ
(2)
1 . . . xH λH zH µ

(2)
H

p\ q t
a1
1 . . . t

aH
H

(33.1)1 G D2u1 + A1 −Φ(p)T −Λ̃1

(33.2)1 S + 1 −Φ(p)
[
−q
Y

]
⊚

[
−z1
0

]

(33.3)1 A
[
−q
Y

]T
I(A, P

(2)
1 ) −λ1(0)I

(33.5)1 P
(2)
1 I(A, P

(2)
1 )T ⊚ ⊚ Σa1

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

(33.1)H G D2uH + AH −Φ(p)T −Λ̃H

(33.2)H S + 1 −Φ(p)
[
−q
Y

]
⊚

[
−zH

0

]

(33.3)H A
[
−q
Y

]T
I(A, P

(2)
H

) −λH (0)I

(33.5)H P
(2)
H

I(A, P
(2)
H

)T ⊚ ⊚ ΣaH
(33.6) G − (S + 1) L . . . L

(33.7) A I . . . I

(34)1 1 Du1

.

.

.

.

.

.

.
.
.

(34)H 1 DuH

(35)
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Define now

R
T (P) = R

GH × R
(S+1)H × R

AH × R

∑
h P

(2)
h × R

G−(S+1) × R
A × R

H ,

with generic element
c̃ =

(
(cxh

, cλh
, czh

, c
µ

(2)
h

)h∈H, cp\ , cq, ct
)
.

Then we conclude if we prove that, for almost all A ∈ N (0), there is no (ξ, c̃) such that φP(ξ, c̃, A) = 0,
where

φP :

k⋃

i=1

O
(
ξi∗

)
× R

T (P) ×N (0) → R
dim(Ξ)+T (P)+1,

φP(ξ, c̃, A) =




F̂P(ξ,A, 0)

M(ξ,A)T c̃

1
2ctct − 1




For any K ⊆ H, consider now the following system in the variables (ξ, c̃, A) ∈
⋃k

i=1O
(
ξi∗

)
×R

T (P)×N (0)





φP(ξ, c̃, A) = 0

cxj
= 0, j ∈ H \ K

cxj
6= 0, j ∈ K.

(36)

It is simple to verify that the proof is complete if we show that, for every K ⊆ H, there exists a full
measure subset NK of N (0) such that, for every A ∈ NK, there is no (ξ, c̃) ∈

⋃k
i=1O

(
ξi∗

)
× R

T (P) such
that (ξ, c̃, A) solves (36).
Define then,

∀∅ 6= K ⊆ H, O(K) = {c̃ ∈ R
T (P) : cxj

6= 0, ∀j ∈ K} and O(∅) = R
T (P).

Such sets are clearly open subsets of R
T (P).

Moreover, for every K ⊆ H, define φP
K :

⋃k
i=1O

(
ξi∗

)
×O(K) ×N (0) → R

dim(Ξ)+T (P)+1+G|H\K| as

φP
K(ξ, c̃, A) =

[
φP(ξ, c̃, A)

cxj
, j ∈ H \ K

]

It is immediate to prove that we get the result if, for every K ⊆ H, there exists a full measure subset ÑK

of N (0) such that, for every A ∈ ÑK, there is no (ξ, c̃) ∈
⋃k

i=1O
(
ξi∗

)
×O(K) with φP

K(ξ, c̃, A) = 0.
Consider then, for every K ⊆ H, the system

φP
K(ξ, c̃, A) = 0 (37)

on
⋃k

i=1O
(
ξi∗

)
×O(K) ×N (0).

We prove the desired property analyzing several cases:

Case 1. Assume K = H. We are going to apply Theorem 7. More precisely, if we show that

D(ξ,c̃,A)φ
P
K(ξ, c̃, A) (38)

has full row rank for every (ξ, c̃, A) ∈
⋃k

i=1O
(
ξi∗

)
× O(K) × N (0) solution to φP

K(ξ, c̃, A) = 0, then,

as desired, there exists a full measure subset ÑK of N (0) such that, for every A ∈ ÑK, there is no

(ξ, c̃) ∈
⋃k

i=1O
(
ξi∗

)
× O(K) with φP

K(ξ, c̃, A) = 0. It is easy to see (cf. Villanacci et al. (2002), Chapter
15, Condition 8) that the matrix in (38) has full row rank if its submatrix

B(ξ, c̃, A) =




M(ξ,A)T N(ξ, c̃, A)

(0, . . . , 0, ct) 0
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has full row rank, where M(ξ,A) has been defined in (35) and N(ξ, c̃, A) = DA

[
M(ξ,A)T c̃

]
.

The computation of B(ξ, c̃, A) is described below. In the first column of the table we indicate the dimension
of the corresponding super-rows.
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cx1
cλ1

cz1
c
µ
(2)
1

. . . cxH
cλH

czH
c
µ
(2)
H

c
p\ cq ct1

. . . ctH
A1 . . . AH

G D2u1 + A1 −ΦT (p) LT DT u1 N1∗ 1

S + 1 −Φ(p)∗
[
−q
Y

]
3

A
[
−q
Y

]T
∗ I(A, P

(2)
1 ) I 5

P
(2)
1 I(A, P

(2)
1 )T ∗ 7

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

G D2uH + AH −ΦT (p) LT DT uH NH∗ 1

S + 1 −Φ(p)∗
[
−q
Y

]
3

A
[
−q
Y

]T
∗ I(A, P

(2)
H

) I 5

P
(2)
H

I(A, P
(2)
H

)T ∗ 7

G − (S + 1) −Λ̃T
1 ∗ ⊚ ⊚ . . . −Λ̃T

H
⊚ ⊚ 4

A
[
−z1
0

]T
−λ1(0)I∗ ⊚ . . .

[
−zH

0

]T
−λH (0)I∗ ⊚ 6

1 ΣT
a1

∗ 8

.

.

.

.
.
.

.

.

.

1 ΣT
aH

∗ 8

1 ct1
∗ . . . ctH

∗ 2

(39)
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We stress that, by Villanacci et al. (2002), Chapter 15, Lemma 28, the matrices Nh = Nh(ξ, c̃, A), with
h ∈ {1, . . . ,H}, have the following property:

cxh
6= 0 ⇒ Nh has full row rank ; (40)

cxh
= 0 ⇒ all the components of Nh are 0 . (41)

Then, by performing the column operations according to the order in the last column of Table (39), we
conclude. Notice that in Step 1 we have exploited (40), while in Step 6 we have used the fact that, by

(25), for every a ∈ A there exists h ∈ H such that a ∈ P
(1)
h . Hence, the matrix, whose columns are the

ones of the matrices −λh(0)I, for h ∈ H, that match well with I(A,P
(2)
h )T , has full rank. In Step 2 all

elements are starred because we don’t know which cth
’s are nonnull: however, since 1

2ctct − 1 = 0, ct 6= 0.

Case 2. Let us consider K = ∅, so that (37) becomes





F̂P(ξ,A, 0) = 0

M(ξ,A)T c̃ = 0

1
2ctct − 1 = 0

cx1
= 0

...
cxH

= 0.

(42)

In this case we are going to prove that
(
φP
K

)−1
(0) = ∅ by showing that, considering just the following

subsystem of (42), 



M(ξ,A)T c̃ = 0

cx1
= 0

...
cxH

= 0,

(43)

if (ξ, c̃, A) ∈
⋃k

i=1O
(
ξi∗

)
× R

T (P) ×N (0) solves (43), then it has to be c̃ = 0. Hence, that solution is not
admissible for (42).
System (43) can be represented by the following table
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c
λ
1

c
z
1

c
µ
(
2
)

1

.
.

.
c
λ

H
c
z

H
c
µ
(
2
)

H

c
p
\

c
q

c
t
1

.
.

.
c
t
H

(
4
4

.1
)
1

G
−

Φ
T

(
p
)

L
T

D
T

u
1

(
4
4

.2
)
1

S
+

1
[ −

q
Y

]

(
4
4

.3
)
1

A
[ −

q
Y

] T
I
(
A

,
P

(
2
)

1
)

I

(
4
4

.4
)
1

P
(
2
)

1
I
(
A

,
P

(
2
)

1
)
T

. . .

. . .

.
.
.

. . .

. . .

.
.
.

(
4
4

.1
)
H

G
−

Φ
T

(
p
)

L
T

D
T

u
H

(
4
4

.2
)
H

S
+

1
[ −

q
Y

]

(
4
4

.3
)
H

A
[ −

q
Y

] T
I
(
A

,
P

(
2
)

H
)

I

(
4
4

.4
)
H

P
(
2
)

H
I
(
A

,
P

(
2
)

H
)
T

(
4
4

.5
)

G
−

(
S

+
1
)

⊚
⊚

.
.

.
⊚

⊚

(
4
4

.6
)

A
[ −

z
1

0

] T
−

λ
1
(
0
)
I

⊚
.

.
.

[ −
z

H
0

] T
−

λ
H

(
0
)
I

⊚

(
4
4

.7
)
1

1
Σ

T a
1

. . .

. . .

.
.
.

(
4
4

.7
)
H

1
Σ

T a
H

(44)

where the components of the vector c̃ in the upper row have to be intended as multiplying the matrices in
the corresponding column, not as the variables with respect to which derivatives are taken. Then, taking
the sums along each super-row and setting them equal to 0, this becomes an alternative way of writing a
linear system. To such equations we associate the labels in the first column.
By (44.2)h we thus find czh

= 0. Moreover, recalling (26.1), from (44.1)h we get

cp\ = 0 and cλh
= cth

λh.

32



Finally, from this, (26.3) and (44.3)h, we obtain

0 = cλh

[ −q
Y

]
+ c

µ
(2)
h

I(A,P
(2)
h )T + cqI =

= cth
λh

[ −q
Y

]
+ c

µ
(2)
h

I(A,P
(2)
h )T + cq = −cth



µ1

h
...
µA

h




T

+ c
µ

(2)
h

I(A,P
(2)
h )T + cq.

Since, by (25), for every a ∈ A there exists h ∈ H with µa
h = 0, then cq = 0.

System (43) can thus be represented as

cλ1
c
µ
(2)
1

. . . cλH
c
µ
(2)
H

ct1 . . . ctH

(44.1)1 G −ΦT (p) DT u1

(44.3)1 A
[
−q
Y

]T
I(A,P

(2)
1 )

.

.

.
.
.
.

. . .
. . .

(44.1)H G −ΦT (p) DT uH

(44.3)H A
[
−q
Y

]T
I(A,P

(2)
H

)

(44.5) G − (S + 1) ⊚ ⊚ . . . ⊚ ⊚

(44.6) A
[
−z1
0

]T
⊚ . . .

[
−zH

0

]T
⊚

(44.7)1 1 ΣT
a1

..

.
..
.

. . .

(44.7)H 1 ΣT
aH

Since there are more rows than columns, we can erase some further rows. This corresponds to consider a
subsystem of (44), and thus of (43), for which we will show that, for any solution (ξ, c̃, A) ∈

⋃k
i=1O

(
ξi∗

)
×

R
T (P) ×N (0), it has to be c̃ = 0, as already explained.

More precisely, for every h ∈ H, using (26.1) we reduce the dimension of (44.1)h from G to S + 1 by
rewriting it as

(−cλh
+ cth

λh) Φ(p) = 0

and by considering just the C(s+ 1)-th components, for s ∈ {0, . . . , S}, i.e.,

−cλh(s) + cth
λh (s) = 0.

Moreover we reduce the dimension of (44.3)h from A to P
(2)
h , by considering just the rows corresponding

to P
(2)
h . In particular, we call

[
−q

(2)
h

Y
(2)
h

]T

the matrix so obtained by
[ −q
Y

]T

. Finally we erase the super-

rows corresponding to (44.5) and (44.6). In the first column of the next table we indicate the matching
variables:

cλ1
c
µ
(2)
1

. . . cλH
c
µ
(2)
H

ct1 . . . ctH

cλ1
(44.1)1 S + 1 −I λ1

c
µ
(2)
1

(44.3)1 P
(2)
1

[
−q

(2)
1

Y
(2)
1

]T

I

.

..
.
..

.

..
. . .

. . .

cλH
(44.1)H S + 1 −I λH

c
µ
(2)
H

(44.3)H P
(2)
H

[
−q

(2)
H

Y
(2)
H

]T

I

ct1 (44.7)1 1 ΣT
a1

..

.
..
.

..

.
. . .

ctH
(44.7)H 1 ΣT

aH

(45)

Since the matrix above is square, in order to get the desired result, it is sufficient to show that it has full
row rank.

By elementary row and column operations, for h ∈ H, we can cancel

[
−q

(2)
h

Y
(2)
h

]T

from (44.3)h, but then
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in the same row the term −µ
(2)
h appears in the column corresponding to cth

.

cλ1
c
µ
(2)
1

. . . cλH
c
µ
(2)
H

ct1 . . . ctH

(44.1)1 S + 1 −I λ1

(44.3)1 P
(2)
1 I −µ

(2)
1

..

.
..
.

. . .
. . .

(44.1)H S + 1 −I λH

(44.3)H P
(2)
H

I −µ
(2)
H

(44.7)1 1 ΣT
a1

.

.

.
.
.
.

. . .

(44.7)H 1 ΣT
aH

We are thus led to consider the simpler matrix:

c
µ
(2)
1

. . . c
µ
(2)
H

ct1 . . . ctH

(44.3)1 P
(2)
1 I −µ

(2)
1

.

..
.
..

. . .
. . .

(44.3)H P
(2)
H

I −µ
(2)
H

(44.7)1 1 ΣT
a1

..

.
..
.

. . .

(44.7)H 1 ΣT
aH

By elementary row and column operations, for h ∈ H, we can erase ΣT
ah

from (44.7)h, but then in the
same row the positive term µah

h σah

h (p, q) appears in the column corresponding to cth
. Notice that here we

are using Assumption (12).

c
µ
(2)
1

. . . c
µ
(2)
H

ct1 . . . ctH

(44.3)1 P
(2)
1 I −µ

(2)
1

.

.

.
.
.
.

. . .
. . .

(44.3)H P
(2)
H

I −µ
(2)
H

(44.7)1 1 µ
a1
1 σ

a1
1 (p, q)

.

.

.
.
.
.

. . .

(44.7)H 1 µ
aH
H

σ
aH
H

(p, q)

The above matrix has clearly full rank.

Case 3. Consider ∅ 6= K 6= H. Then (37) becomes





F̂P(ξ,A, 0) = 0

M(ξ,A)T c̃ = 0

1
2ctct − 1 = 0

cxj
= 0, j ∈ H \ K.

(46)

Let us show that a suitable subsystem of (46) and, more precisely, of





F̂P(ξ,A, 0) = 0

M(ξ,A)T c̃ = 0

cxj
= 0, j ∈ H \ K

(47)

has generically no solution by a transversality argument.
As already explained in Case 2, a suitable subsystem of (47) can be represented by the following table,
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w
h
ere

w
e

assu
m

e
i
∈
K

an
d
j
∈
H

\
K
.cxi

cλi
czi

c
µ
(2)
i

cλj
czj

c
µ
(2)
j

c
p\ cq cti

ctj

(48.1)i G D2ui + Ai −ΦT (p) LT DT ui

(48.2)i S + 1 −Φ(p)
[
−q
Y

]

(48.3)i A
[
−q
Y

]T
I(A, P

(2)
i

) I

(48.4)i P
(2)
i

I(A, P
(2)
i

)T

(48.1)j G −ΦT (p) LT DT uj

(48.2)j S + 1
[
−q
Y

]

(48.3)j A
[
−q
Y

]T
I(A, P

(2)
j

) I

(48.4)j P
(2)
j

I(A, P
(2)
j

)T

(48.5) G − (S + 1) −Λ̃T
i ⊚ ⊚ ⊚ ⊚

(48.6) A
[
−zi
0

]T
−λi(0)I ⊚

[−zj
0

]T
−λj(0)I ⊚

(48.7)i 1 ΣT
ai

(48.7)j 1 ΣT
aj

(48)

E
x
actly

as
in

C
ase

2
,
from

S
y
stem

(48)
w

e
ob

tain

c
z

j
=

0
,

∀
j
∈
H

\
K

c
p
\

=
0

an
d

c
λ

j
=
c
t
j λ

j ,
∀
j
∈
H

\
K
.
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Thus, erasing the null terms in System (48), it becomes

c
x

i
c
λ

i
c
z

i
c
µ
(
2
)

i

c
λ

j
c
µ
(
2
)

j

c
q

c
t
i

c
t
j

(
4
8

.1
)
i

G
D

2
u

i
+

A
i

−
Φ

T
(
p
)

D
T

u
i

(
4
8

.2
)
i

S
+

1
−

Φ
(
p
)

[ −
q

Y

]

(
4
8

.3
)
i

A
[ −

q
Y

] T
I
(
A

,
P

(
2
)

i
)

I

(
4
8

.4
)
i

P
(
2
)

i
I
(
A

,
P

(
2
)

i
)
T

(
4
8

.1
)
j

G
−

Φ
T

(
p
)

D
T

u
j

(
4
8

.3
)
j

A
[ −

q
Y

] T
I
(
A

,
P

(
2
)

j
)

I

(
4
8

.5
)

G
−

(
S

+
1
)

−
Λ̃

T i
⊚

⊚
⊚

⊚

(
4
8

.6
)

A
[ −

z
i

0

] T
−

λ
i
(
0
)
I

⊚

[ −
z

j
0

] T
⊚

(
4
8

.7
)
i

1
Σ

T a
i

(
4
8

.7
)
j

1
Σ

T a
j

Since there are more rows than columns, we can erase some further rows, provided the number of rows
still exceeds the number of columns. This corresponds to consider a subsystem of (48), for which we will
show that it generically has no solutions.
More precisely, for every j ∈ H \ K, using (26.1), we reduce the dimension of (48.1)j from G to S + 1 by
rewriting it as

(−cλj
+ ctj

λj)Φ(p) = 0

and by considering just the C(s+ 1)-th components, for s ∈ {0, . . . , S}, i.e.,

−cλj(s) + ctj
λj (s) = 0.

Moreover, for every j ∈ H \ K, we reduce the dimension of (48.3)j from A to P
(2)
j , by considering only

the rows corresponding to P
(2)
j . In particular, we call

[
−q

(2)
j

Y
(2)
j

]T

the matrix so obtained by
[ −q
Y

]T

.

Finally we erase the super-row corresponding to (48.6).
In this way, we obtain the following table, whose first column indicates the matching variables of each
super-row. The square around cq in the super-row corresponding to (48.5) means that we match that
super-row with the lower dimensional variable cq.
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c
x

i
c
λ

i
c
z

i
c
µ
(
2
)

i

c
λ

j
c
µ
(
2
)

j

c
q

c
t
i

c
t
j

c
x

i
(
4
8

.1
)
i

G
D

2
u

i
+

A
i

−
Φ

T
(
p
)

D
T

u
i

c
λ

i
(
4
8

.2
)
i

S
+

1
−

Φ
(
p
)

[ −
q

Y

]

c
z

i
(
4
8

.3
)
i

A
[ −

q
Y

] T
I
(
A

,
P

(
2
)

i
)

I

c
µ
(
2
)

i

(
4
8

.4
)
i

P
(
2
)

i
I
(
A

,
P

(
2
)

i
)
T

c
λ

j
(
4
8

.1
)
j

S
+

1
−

I
λ

j

c
µ
(
2
)

j

(
4
8

.3
)
j

P
(
2
)

j

[
−

q

(
2
)

j

Y

(
2
)

j

] T
I

I
(
A

,
P

(
2
)

j
)
T

c
q

(
4
8

.5
)

G
−

(
S

+
1
)

−
Λ̃

T i
⊚

⊚
⊚

⊚

c
t
i

(
4
8

.7
)
i

1
Σ

T a
i

c
t
j

(
4
8

.7
)
j

1
Σ

T a
j

Let us call δPK :
⋃k

i=1O
(
ξi∗

)
×R

LK(P) ×N (0) → R
MK(P), the function describing the left hand side of

the above linear system14, where

R
LK(P) = R

G|K| × R
(S+1)|K| × R

A|K| × R

∑
i∈K P

(2)
i × R

|K| × R
(S+1)|H\K| × R

∑
j∈H\K P

(2)
j × R

|H\K| × R
A

and

R
MK(P) = R

G|K|×R
(S+1)|K|×R

A|K|×R

∑
i∈K P

(2)
i ×R

|K|×R
(S+1)|H\K|×R

∑
j∈H\K P

(2)
j ×R

|H\K|×R
(G−(S+1)).

More precisely, for (ξ, č, A) ∈
⋃k

i=1O
(
ξi∗

)
× R

LK(P) ×N (0), with

č =
((
cxi
, cλi

, czi
, c

µ
(2)
i

, cti

)
i∈K

,
(
cλj

, c
µ

(2)
j

, ctj

)
j∈H\K

, cq

)
,

14Notice that we have suitably permuted the rows and columns of the above table.
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δPK(ξ, č, A) =




cxi

(
D2ui(xi) +Ai

)
− cλi

Φ(p) + cti
Dui(xi), i ∈ K

−cxi
Φ(p)T + czi

[ −q
Y

]T

, i ∈ K

cλi

[ −q
Y

]
+ c

µ
(2)
i

I(A,P
(2)
i )T + cq, i ∈ K

czi
I(A,P

(2)
i ), i ∈ K

c
µ

(2)
i

Σai
, i ∈ K

−cλj
+ ctj

λj , j ∈ H \ K

cλj

[
−q

(2)
j

Y
(2)
j

]
+ c

µ
(2)
j

+ cq I(A,P
(2)
j ), j ∈ H \ K

c
µ

(2)
j

Σaj
, j ∈ H \ K

−cxi
Λ̃i + cλi

⊚ +c
µ

(2)
i

⊚ +cλj
⊚ +c

µ
(2)
j

⊚, i ∈ K, j ∈ H \ K




Then we are going to apply Theorem 7 to

∆P
K :

k⋃

i=1

O
(
ξi∗

)
× R

LK(P) ×N (0) → R
dim(Ξ)+MK(P),

(ξ, č, A) 7→ ∆P
K(ξ, č, A) =

(
F̂P(ξ,A, 0), δPK(ξ, č, A)

)
.

Since, by our assumptions, A < G−(S+1), and thus LK(P) < MK(P), if we prove that, for every solution
to ∆P

K(ξ, č, A) = 0,
D(ξ,č,A)∆

P
K(ξ, č, A)

has full row rank, then there exists a full measure subset ÑK of N (0) such that, for every A ∈ ÑK, there

is no (ξ, č) ∈
⋃k

i=1O
(
ξi∗

)
× Ǒ(K) such that ∆P

K(ξ, č, A) = 0, where

Ǒ(K) = {č ∈ R
LK(P) : cxj

6= 0, ∀j ∈ K} ⊆ R
LK(P).

Then, a fortiori, for every A ∈ ÑK, there is no (ξ, c̃) ∈
⋃k

i=1O
(
ξi∗

)
×O(K) such that φP

K(ξ, c̃, A) = 0, as
desired.
In particular we are going to show that D(ξ,č,A)∆

P
K(ξ, č, A) has full row rank by checking that a suitable

submatrix of D(ĉ,A)∆
P
K(ξ, č, A) has full row rank, where

ĉ =
((
cxi
, cλi

, czi
, c

µ
(2)
i

, cti

)
i∈K

,
(
cλj

, c
µ

(2)
j

, ctj

)
j∈H\K

)
∈ R

LK(P)−A.

Recalling (41), the computation of the submatrix of D(ĉ,A)∆
P
K(ξ, č, A) is described in the following table.

The numbers in the last column indicate the order of the steps of the perturbation technique.
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cxi
cλi

czi
c
µ
(2)
i

cλj
c
µ
(2)
j

cti
ctj

Ai

G D2ui + Ai −ΦT (p) DT ui Ni∗ 1

S + 1 −Φ(p)∗
[
−q
Y

]
2

A
[
−q
Y

]T
∗ I(A, P

(2)
i

) 4

P
(2)
i

I(A, P
(2)
i

)T ∗ 5

S + 1 −I λj

P
(2)
j

[
−q

(2)
j

Y

(2)
j

]T
I

G − (S + 1) −Λ̃T
i ∗ ⊚ ⊚ ⊚ ⊚ 3

1 ΣT
ai

∗ 6

1 ΣT
aj

H
en

ce
w

e
are

left
w

ith
sh

ow
in

g
th

at
th

e
follow

in
g

sm
aller

m
atrix

h
as

fu
ll

row
ran

k
:

c
λ

j
c
µ
(
2
)

j

c
t
j

c
λ

j
S

+
1

−
I

λ
j

c
µ
(
2
)

j

P
(2

)
j

[
−

q
(
2
)

j

Y
(
2
)

j

]
T

I

c
t
j

1
Σ

Ta
j
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Assume H \ K = {1, . . . , Ĥ}, for some Ĥ ≥ 1. The matrix above then becomes:

cλ1
c
µ
(2)
1

. . . cλ
Ĥ

c
µ
(2)

Ĥ

ct1 . . . ct
Ĥ

cλ1
S + 1 −I λ1

c
µ
(2)
1

P
(2)
1

[
−q

(2)
1

Y
(2)
1

]T

I

..

.
..
.

. . .
. . .

cλ
Ĥ

S + 1 −I λ
Ĥ

c
µ
(2)

Ĥ

P
(2)

Ĥ

[
−q

(2)

Ĥ

Y
(2)

Ĥ

]T

I

ct1 1 ΣT
a1

.

..
.
..

. . .

ct
Ĥ

1 ΣT
a

Ĥ

The matrix above can then be shown to have full rank following the steps used for the matrix in (45).
The only difference between the two matrices is indeed the dimension, but the structure is exactly the
same.
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