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1 Introduction

We analyze a general financial equilibrium model with real assets and restricted participation. Assets are
said to be real if they promise to deliver bundles of commodities. Participation is said to be restricted if
each asset demand has to belong to a household specific set, called restriction set.

For a recent, brief survey of the literature on restricted participation see Carosi, Gori and Villanacci
(2009). The standard main reference on financial equilibrium with real assets is still Duffie and Shafer
(1985). As it is well known, in the case of incomplete markets with real assets, since changes in prices
may change the rank of the return matrix causing a discontinuity in the demand function, equilibria may
not exist. On the other hand, using a description of the financial structure in terms of Grassmannian
manifolds, Duffie and Shafer (1985) show existence for every utility function vector and every endowment
and yield vectors in an open and full measure set.

At the best of our knowledge, the only contribution which combines both real assets and restricted
participation is the paper by Polemarchakis and Siconolfi (1997), whose restriction sets are not immediate
to interpret. Each household is exogenously associated with a vector subspace of the possible wealth
transfers; her actual restriction set is then described by the orthogonal projection of that subspace on the
(price dependent) image of the return matrix.

In the present paper, we combine the presence of real assets with simple, economically sound participa-
tion restrictions on financial markets. Indeed, each household faces an asset specific borrowing constraint
which depends upon prices, the existence of exogenously given bound being quite hard to justify on
economic ground.
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Main characteristics of our existence result can be described as follows. First of all, we do not use
Grassmannian manifolds to describe the asset return structure. Moreover, we show existence of equilibria
for all economies described by strictly positive endowments, standard smooth utility functions, general
borrowing constraints and a quite large class of assets. In fact, our result holds true if assets are of the
numeraire type, or if assets deliver general bundles of commodities, as long as yield vectors are sufficiently
diversified in each state. Our result is not a generic one as in the model of Duffie and Shafer (1985).
There, knowing the characteristics of a specific economy does not allow to conclude the desired existence
result. In our case, the set of economies for which existence is obtained is described by the properties
imposed on each exogenous variable, properties which can be immediately checked to hold.

In the remainder of the paper, we first describe the set-up of the model and the main results and we
finally present proofs.

2 Set-up of the model and main results

Our model builds up on the very standard two-period, pure exchange economy with uncertainty and
financial markets. We consider a commodity market in which C ≥ 2 types of different commodities,
denoted by c ∈ C = {1, 2, . . . , C}, are traded both today and tomorrow. We assume that tomorrow only
one among S ≥ 1 possible states of the world, denoted by s ∈ {1, . . . , S}, will occur. We denote today
by s = 0 and we define S = {0, 1, . . . , S}. Asset markets open in the first period, and there are A ≥ 1
assets traded, denoted by a ∈ A = {1, 2, . . . , A}. We assume A ≤ S. Finally, there are H ≥ 2 households,
denoted by h ∈ H = {1, 2, . . . ,H}. The time structure of the model is as follows: today, households
exchange commodities and assets, and consumption takes place. Then, tomorrow, uncertainty is resolved,
households honor their financial obligations, and they again exchange and then consume commodities.

We denote by1 xc
h(s) ∈ R++ the consumption of commodity c in state s by household h and by

ec
h(s) ∈ R++ the endowment of commodity c in state s owned by household h. We define

xh(s) = (xc
h(s))c∈C ∈ R

C
++, xh = (xh(s))s∈S ∈ R

G
++, x = (xh)h∈H ∈ R

GH
++ ,

eh(s) = (ec
h(s))c∈C ∈ R

C
++, eh = (eh(s))s∈S ∈ R

G
++, e = (eh)h∈H ∈ R

GH
++ ,

where G = C(S + 1). Household h’s preferences are represented by a utility function uh : R
G
++ → R. As

in most of the literature on smooth economies we assume that, for every h ∈ H,

uh ∈ C2(RG
++); (1)

for every xh ∈ R
G
++, Duh(xh) ≫ 0 ; (2)

for every v ∈ R
G \ {0} and xh ∈ R

G
++, Duh(xh) v = 0 implies v D2uh(xh) v < 0 ; (3)

for every xh ∈ R
G
++,

{
xh ∈ R

G
++ : uh(xh) ≥ uh(xh)

}
is closed in the topology of R

G. (4)

Let us denote by U the set of vectors u = (uh)h∈H of such utility functions. We denote by pc(s) ∈ R++

the price of commodity c at spot s, by qa ∈ R the price of asset a and by za
h ∈ R the quantity of asset a

held by household h. Moreover we define

p(s) = (pc(s))c∈C ∈ R
C
++, p = (p(s))s∈S ∈ R

G
++, q = (qa)a∈A ∈ R

A,

zh = (za
h)a∈A ∈ R

A, z = (zh)h∈H ∈ R
AH .

We denote by ya,c(s) ∈ R the units of commodity c delivered by one unit of asset a in state s and we
define

ya(s) = (ya,c(s))c∈C ∈ R
C , y(s) = (ya(s))a∈A ∈ R

CA, y = (y(s))s∈{1,...,S} ∈ R
CAS .

1For every positive integer N, we define the binary relations ≫, ≥ and > over R
N as follows: given v = (v1, . . . , vN ) and

w = (w1, . . . , wN ) ∈ R
N , we write

v ≫ w if vi > wi, ∀ i ∈ {1, . . . , N} ;
v ≥ w if vi ≥ wi, ∀ i ∈ {1, . . . , N} ;
v > w if v ≥ w and v 6= w.

We define also the sets R
N

+
= {v ∈ R

N : v ≥ 0} and R
N

++
= {v ∈ R

N : v ≫ 0}.
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Note in particular that, in state s, asset a promises to deliver a vector ya(s) of commodities. Define the
return matrix function as follows

R : R
G
++ × R

CAS → M(S,A),

(p, y) 7→ [p(s)ya(s)]s∈{1,...,S},a∈A =




p(1)y1(1) . . . p(1)ya(1) . . . p(1)yA(1)
...

. . .
...

. . .
...

p(s)y1(s) . . . p(s)ya(s) . . . p(s)yA(s)
...

. . .
...

. . .
...

p(S)y1(S) . . . p(S)ya(S) . . . p(S)yA(S)




where M(S,A) is the space of the S × A matrices with real elements.
Consistently with our restricted participation framework, we assume that each household h has only

partial access, in a personalized manner to the asset market. In particular we assume that each household
cannot sell more than a fixed quantity, depending on commodity and asset prices, of each asset. More
precisely, we assume that, for every h ∈ H, there is a function

σh : R
G
++ × R

A → R
A, (p, q) 7→ (σa

h(p, q))a∈A

such that, for every (p, q) ∈ R
G
++ × R

A, σa
h(p, q) represents the largest quantity of asset a that household

h can sell at prices (p, q), i.e., the maximum amount she can borrow using asset a. We then each function
σh borrowing function. We assume that,

for every h ∈ H, σh ∈ C2(RG
++ × R

A, RA); (5)

for every h ∈ H, a ∈ A, (p, q) ∈ R
G
++ × R

A, σa
h(p, q) ≥ 0; (6)

for every a ∈ A, (p, q) ∈ R
G
++ × R

A,

H∑

h=1

σa
h(p, q) > 0. (7)

Let us denote by Σ the set of vectors σ = (σh)h∈H of such functions. The meaning of the above properties
is simply described. Assumption (5) allows to use differential techniques. Assumption (6) permits no
participation on financial markets. Assumption (7) insures that each asset is nontrivially exchanged.

We define the set of economies as

E = R
GH
++ × U × R

CAS × Σ,

with generic element E = (e, u, y, σ), and for given (p, q, E) ∈ R
G
++ ×R

A ×E , we assume household h ∈ H
has to solve the following maximization problem

max
(xh,zh)

uh(xh) s.t.





p(0)xh(0) + qzh = p(0)eh(0)

p(s)xh(s) = p(s)eh(s) + (p(s)ya(s))
A

a=1 zh, s ∈ {1, . . . , S}

za
h + σa

h(p, q) ≥ 0

(8)

We are now ready to give the definition of equilibrium we use.

Definition 1. θ =
(
(xh, zh)h∈H , p, q

)
∈ R

GH
++ × R

AH × R
G
++ × R

A = Θ is an equilibrium for E if, for

every h ∈ H, (xh, zh) solves Problem (8) at (p, q, E) and (x, z) satisfies market clearing conditions, that

is,
H∑

h=1

(xh − eh) = 0 and

H∑

h=1

zh = 0. (9)

We denote by Θ(E) the set of equilibria for E and we set

Θn(E) =
{
θ ∈ Θ(E) : ∀s ∈ S, pC(s) = 1

}
.
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We prove existence of equilibria using a homotopy argument. Two key steps in that strategy are the
proof of compactness of the equilibrium set along the chosen homotopy path, and the regularity of the so
called test economy. Our modeling of restrictions allows to get the first result with some work. To get
regularity of the test economy, a rank property on the return matrix turns out to be sufficient - see (10)
below - and of course, it needs to be translated in terms of fundamentals. In fact, assumptions on the
yield structure which guarantee that rank property are proved to be relatively general: numeraire assets
and real assets for which yield vectors are sufficiently diversified in each state do belong to the family of
assets for which we show existence. In what follows, we formalize the above described second step.

We say that the allocation (xh)h∈H ∈ R
GH
++ is Pareto Optimal for u ∈ U if there is no allocation

(x̃h)h∈H ∈ R
GH
++ such that

H∑

h=1

x̃h ≤
H∑

h=1

xh and (uh(x̃h))h∈H > (uh(xh))h∈H .

Denote the set of Pareto Optimal allocations for u ∈ U by P(u) ⊆ R
GH
++ and define the set

E⋄ =
{

(e, u, y, σ) ∈ E : ∃x ∈ P(u) such that rank (R(Du1(x1), y)) = A
}

. (10)

We now state our existence result.

Theorem 2. For every E ∈ E⋄, Θn(E) 6= ∅.

Conditions on yields which insure that the associated economies are indeed contained in E⋄ are presented
below. We say that y ∈ R

CAS belongs to Y1 if there exists K ⊆ {1, . . . , S}, with2 |K| = A, and a function
α : {1 . . . , S} → C such that

∀(s, a, c) ∈ K ×A× C, c 6= α(s) ⇒ ya,c(s) = 0, (11)

rank
( [

ya,α(s)(s)
]

s∈K,a∈A

)
= A, (12)

while we say that y ∈ R
CAS belongs to Y2 if there exists K ⊆ {1, . . . , S}, with |K| = A, such that

∀ s ∈ K, rank
(
[ya,c(s)]c∈C,a∈A

)
= A. (13)

Yields in Y1 are associated with assets which deliver units of a unique, state dependent, commodity in
each state in a subset of cardinality A of all possible states. Yields of numeraire assets belong to Y1: in
that case, assets pay in units of the same commodity in each state. Yields in Y2 are associated with assets
whose yield vectors are sufficiently diversified, in fact, linearly independent in A states. For example,
assumptions defining Y2 are satisfied if there are A available commodities and in each state each asset a

delivers units of commodity a only.
The following theorem explains the relationship between Y1,Y2 and E⋄.

Theorem 3. R
GH
++ × U × (Y1 ∪ Y2) × Σ ⊆ E⋄. Moreover, if A ≤ C, then Y2 is an open and full measure

subset of R
CAS, else Y2 = ∅.

3 Proof of the main results

Throughout we are going to use the two following results (see Villanacci et al. (2002)).

Theorem 4. Let m, p, n and r be nonnegative integers, and let M , Ω and N be Cr manifolds of

dimensions m, p and n, respectively. Let F : M × Ω → N be a Cr function. Assume r > max{m − n, 0}.
If y is a regular value for F, then there exists a full measure subset Ω∗ of Ω such that, for every ω ∈ Ω∗,

y is a regular value for Fω : M → N, x 7→ F (x, ω).

2Given a set B, we denote by |B| its cardinality.
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Theorem 5. Let M, N be C2 boundaryless manifolds of the same dimension, y ∈ N and F,G : M → N be

continuous functions. Assume that G is C1 in an open neighborhood U of G−1(y), y is a regular value for

G restricted to U , |G−1(y)| is finite and odd, and there exists a continuous homotopy H : M × [0, 1] → N

from F to G such that H−1(y) is compact. Then F−1(y) 6= ∅.

Define the vectors

x
\
h(s) = (xc

h(s))
c∈{1,...,C−1} ∈ R

C−1
++ , x

\
h = (x

\
h(s))s∈S ∈ R

G−(S+1)
++ ,

e
\
h(s) = (ec

h(s))c∈{1,...,C−1} ∈ R
C−1
++ , e

\
h = (e

\
h(s))s∈S ∈ R

G−(S+1)
++ .

(14)

As S + 1 Walras’ laws hold true in our model, the significant market clearing conditions in Definition 1
are in fact

H∑

h=1

(x
\
h − e

\
h) = 0 and

H∑

h=1

zh = 0. (15)

Since we are going to study equilibria in terms of first order conditions associated with households’
maximization problems and (significant) market clearing conditions, define

Ξ = R
GH
++ × R

(S+1)H
++ × R

AH × R
AH × R

G
++ × R

A

with generic element
ξ =

(
(xh, λh, zh, µh)h∈H , p, q

)
= (x, λ, z, µ, p, q) ,

and the function
F : Ξ × E → R

dim(Ξ),

F (ξ, E) =




(16.1) Dxh(s)uh(xh) − λh(s)p(s)

(16.2)
−p(0)(xh(0) − eh(0)) − qzh

−p(s)(xh(s) − eh(s)) + (p(s)ya(s))A
a=1zh, s ∈ {1, . . . , S}

(16.3) −λh(0)qa +
S∑

s=1
λh(s)p(s)ya(s) + µa

h

(16.4) min {µa
h, za

h + σa
h (p, q)}

(16.5)
H∑

h=1

(x
\
h − e

\
h)

(16.6)
H∑

h=1

zh

(16.7) pC(s) − 1




(16)

where dim(Ξ) denotes the dimension of the manifold (open set) Ξ.
Given now E ∈ E , it is immediate to prove that if θ =

(
(xh, zh)h∈H , p, q

)
∈ Θn(E), then there exists

(λh, µh)h∈H ∈ R
(S+1)H
++ × R

AH such that ξ =
(
(xh, λh, zh, µh)h∈H , p, q

)
∈ Ξ solves system F(ξ, E) = 0.

Vice versa, if ξ =
(
(xh, λh, zh, µh)h∈H , p, q

)
∈ Ξ solves system F (ξ, E) = 0, then

(
(xh, zh)h∈H , p, q

)
∈

Θn(E).

Of course, Theorem 2 is a consequence of the following result.

Theorem 6. For every E ∈ E⋄, there exists ξ ∈ Ξ such that F(ξ, E) = 0.

Proof. Let E = (e, u, y, σ) ∈ E⋄ be given, and define

F : Ξ → R
dim(Ξ), ξ 7→ F(ξ, E).

Fix ε > 0 and x∗ ∈ P(u) such that rank (R(Du1(x
∗
1), y)) = A. Consider then the system in the unknowns
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ξ = (x, λ, z, µ, p, q) ∈ Ξ and τ ∈ [0, 1], given by




(17.1) Dxh(s)uh(xh) − λh(s)p(s) = 0

(17.2)
−p(0)(xh(0) − ((1 − τ)eh(0) + τx∗

h(0))) − qzh = 0
−p(s)(xh(s) − ((1 − τ)eh(s) + τx∗

h(s))) + (p(s)ya(s))A
a=1zh = 0, s ∈ {1, . . . , S}

(17.3) −λh(0)qa +
S∑

s=1
λh(s)p(s)ya(s) + µa

h = 0

(17.4) min {µa
h, za

h + (1 − τ)σa
h(p, q) + τε} = 0

(17.5)
H∑

h=1

(
x
\
h −

(
(1 − τ)e

\
h + τx∗

h
\
))

= 0

(17.6)
H∑

h=1

zh = 0

(17.7) pC(s) − 1 = 0

(17)

and define the functions

H : Ξ × [0, 1] → R
dim(Ξ), (ξ, τ) 7→ left hand side of System (17),

and
G : Ξ → R

dim(Ξ), ξ 7→ H (ξ, 1) .

Observe that, for every ξ ∈ Ξ, H (ξ, 0) = F (ξ) , and that F,H,G are C0 in Ξ. Note also that, for every
(p, q, τ) and h ∈ H, if (xh, λh, zh, µh) solves equations (17.1)-(17.4), then (xh, zh) is optimal solution to
the maximization problem

max
(xh,zh)

uh(xh) s.t.





p(0)xh(0) + qzh = p(0)((1 − τ)eh(0) + τx∗
h(0))

p(s)xh(s) = p(s)((1 − τ)eh(s) + τx∗
h(s)) + (p(s)ya(s))

A

a=1 zh, s ∈ {1, . . . , S}

za
h + (1 − τ)σa

h(p, q) + τε ≥ 0

(18)

and, vice versa, if (xh, zh) is optimal solution to (18), then there exists (λh, µh) such that (xh, λh, zh, µh)
solves equations (17.1)-(17.4). Moreover, if (ξ, τ) ∈ Ξ × [0, 1] is such that H(ξ, τ) = 0, then indeed

H∑

h=1

(xh − ((1 − τ)eh + τx∗
h)) = 0. (19)

Finally, if we prove that

G−1(0) = {ξ∗} and G is C1 in an open neighborhood of ξ∗, (20)

DξG(ξ∗) is not singular, (21)

H−1(0) is compact, (22)

for some ξ∗ ∈ Ξ, then Theorem 5 can be applied to get F−1(0) 6= ∅. In what follows, we are going to
prove that conditions (20), (21) and (22) hold true.

In order to prove (20), let us show that

G−1(0) = {ξ∗} =
{(

(x∗
h, λ∗

h, z∗h, µ∗
h)h∈H , p∗, q∗

)}
,

where (x∗
h)h∈H is the element of P(u) used in the definition of System (17) and

∀h ∈ H, λ∗
h =

(
D

xC
h

(S)
uh(x∗

h
)

D
xC
1 (S)

u1(x∗

1) DxC

1 (s)u1(x
∗
1)

)

s∈S

∈ R
S+1
++ ,

∀h ∈ H, z∗h = 0 ∈ R
A,

∀h ∈ H, µ∗
h = 0 ∈ R

A,

p∗ =

(
Dx1(s)u1(x

∗

1)

D
xC
1 (s)

u1(x∗

1)

)

s∈S

∈ R
G
++,

q∗ =

(
S∑

s=1

Dx1(s)u1(x
∗

1)

D
xC
1 (0)

u1(x∗

1) ya(s)

)

a∈A

∈ R
A.
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Indeed, as x∗ = (x∗
h)h∈H ∈ P(u), we know that there exists (θ∗, γ∗) = ((θ∗h)h∈H, γ∗) ∈ R

H ×R
G such that

(x∗, θ∗, γ∗) solves the system 



θhDuh(xh) − γ = 0

θ1 − 1 = 0

H∑

h=1

(xh − x∗
h) = 0

(23)

Then it is immediate to prove that G(ξ∗) = 0, that is, ξ∗ solves the system





(24.1) Dxh(s)uh(xh) − λh(s)p(s) = 0

(24.2)
−p(0)(xh(0) − x∗

h(0)) − qzh = 0
−p(s)(xh(s) − x∗

h(s)) + (p(s)ya(s))A
a=1zh = 0, s ∈ {1, . . . , S}

(24.3) −λh(0)qa +
S∑

s=1
λh(s)p(s)ya(s) + µa

h = 0

(24.4) min{µa
h, za

h + ε} = 0

(24.5)
H∑

h=1

(x
\
h − x∗

h
\) = 0

(24.6)
H∑

h=1

zh = 0

(24.7) pC(s) − 1 = 0

(24)

Consider now
ξ∗∗ =

(
(x∗∗

h , λ∗∗
h , z∗∗h , µ∗∗

h )h∈H , p∗∗, q∗∗
)
∈ Ξ

such that G(ξ∗∗ ) = 0, and prove that ξ∗∗ = ξ∗. Let us show at first that x∗∗ = x∗. Suppose by
contradiction x∗∗ 6= x∗ and consider x̃ = 1

2 (x∗ + x∗∗). Since G(ξ∗∗) = 0, then

H∑

h=1

x̃h =
1

2

H∑

h=1

(x∗
h + x∗∗

h ) =

H∑

h=1

x∗
h. (25)

Moreover we have also that, for every h ∈ H, (x∗∗
h , z∗∗h ) is the maximum for Problem (18), considered at

prices p∗∗ and q∗∗ and τ = 1. As (x∗
h, z∗h) is feasible for the same problem, we obtain uh(x∗∗

h ) ≥ uh(x∗
h)

and then, by (3) and x∗∗ 6= x∗, it follows

(uh(x̃h))h∈H > (uh(x∗
h))h∈H . (26)

Since (25) and (26) imply that x∗ 6∈ P(u), the contradiction is finally found.
Let us prove now that λ∗∗ = λ∗. From (24.7) we know that, for every s ∈ S,

p∗∗C(s) = 1 = p∗C(s),

and then from (24.1) we find that, for every h ∈ H, s ∈ S,

λ∗∗
h (s) = DxC

h
(s)uh(x∗

h) = λ∗
h(s).

From the above relationship we immediately deduce p∗∗ = p∗, as (24.1) implies that, for every s ∈ S,

p∗∗(s) =
Dxh(s)uh(x∗

h)

λ∗
h(s)

= p∗(s).

In order to prove that z∗∗ = z∗, observe that the definition of p∗ implies rank (R(p∗, y)) = A. Moreover,
from (24.2) and the equalities x∗∗ = x∗ and p∗∗ = p∗, we have that, for every h ∈ H, R(p∗, y)z∗∗h = 0,
that is, z∗∗h = 0. Then we get the equality z∗∗ = z∗.
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Clearly, from (24.4), µ∗∗ = µ∗ = 0. Finally, from (24.3), we obtain that, for every a ∈ A, h ∈ H,

q∗∗a =
1

λ∗
h(0)

(
S∑

s=1

λ∗
h(s)p∗(s)ya(s) + µ∗a

h

)
= q∗a.

and then q∗∗ = q∗, as well. Then we have obtained that ξ∗∗ = ξ∗ and, since it is immediate to show that
G is C1 in an open neighborhood of ξ∗, (20) is proved.

The proof of (21) is indeed a very simple modification of the argument in Villanacci et al. (2002),
Chapter 11, Lemma 18. More precisely, the computation of DξG(ξ∗) is described in the table below. Note
that the components of the function G are listed in the first column, the variables with respect to which
derivatives are taken are listed in the first row, and in the remaining bottom right corner the Jacobian
matrix is displayed.

xh λh zh µh p q

(24.1) D2uh(x∗
h) −Φ(p∗)T −Λ∗

h

(24.2) −Φ(p∗)
[

−q∗

R(p∗,y)

]

(24.3)
[

−q∗

R(p∗,y)

]T
IA −λ∗

h(0)IA

(24.4) IA

(24.5) L

(24.6) IA

(24.7) M

where, for every positive integer N , IN is the identity matrix of dimension N , and

Φ(p) =




p1(0) · · · pC−1(0) 1
. . .

p1(S) · · · pC−1(S) 1




(S+1)×G

M =




0 · · · 0 1
. . .

0 · · · 0 1




(S+1)×G

Λ∗
h =




λ∗
h(0)IC

. . .

λ∗
h(S)IC




G×G

L =




IC−1 0
. . .

IC−1 0




G−(S+1)×G

In order to simplify our argument, we make some preliminary observations. Thanks to the presence of IA

in correspondence to µh and the fact that there are no other nonnull elements on its super-row, we are left
with proving it is not singular the matrix obtained from DξG(ξ∗) by erasing the super-row and the super-
column corresponding to µh. Moreover, with the nonnull elements of M we can clean the corresponding
columns and erase them, and finally erase the super-row of M, too. Define now

Λ̃∗
h =




λ∗
h(0)IC−1

0
. . .

λ∗
h(S)IC−1

0




G×G−(S+1)

and introduce p\ = (p\(s))s∈S , where p\(s) = (p1(s), . . . , pC−1(s)) ∈ R
C−1
++ . Hence, we are led to prove

that the following matrix, that we call N(ξ∗), is not singular
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xh λh zh p\ q

(24.1) D2uh(x∗
h) −Φ(p∗)T −Λ̃∗

h

(24.2) −Φ(p∗)
[

−q∗

R(p∗,y)

]

(24.3)
[

−q∗

R(p∗,y)

]T
−λ∗

h(0)IA

(24.5) L

(24.6) IA

Let us show that if N(ξ∗)∆ζ = 0, for some

∆ζ = ((∆xh,∆λh,∆zh)h∈H ,∆p\,∆q) ∈ R
GH
++ × R

(S+1)H
++ × R

AH × R
G−(S+1)
++ × R

A,

then ∆ζ = 0. We rewrite N(ξ∗)∆ζ = 0 as





(27.1) D2uh(x∗
h)∆xh − Φ(p∗)T ∆λh − Λ̃∗

h∆p\ = 0

(27.2) −Φ(p∗)∆xh +
[

−q∗

R(p∗,y)

]
∆zh = 0

(27.3)
[

−q∗

R(p∗,y)

]T
∆λh − λ∗

h(0)∆q = 0

(27.4)
H∑

h=1

∆x
\
h = 0

(27.5)
H∑

h=1

∆zh = 0,

(27)

where
∆x

\
h(s) = (∆xc

h(s))c∈{1,...,C−1} ∈ R
C−1
++ and ∆x

\
h = (∆x

\
h(s))s∈S ∈ R

G−(S+1)
++ .

Recall that, as (x∗
h)h∈H ∈ P(u), there exists (θ∗, γ∗) ∈ R

H ×R
G such that (x∗, θ∗, γ∗) solves System (23).

Then, defined

Γ∗ =




γ∗C(0)IC−1

0
. . .

γ∗C(S)IC−1

0




G×G−(S+1)

where γ∗ = (γ∗c(s))c∈C,s∈S , we have

Λ̃∗
h =

1

θ∗h
Γ∗. (28)

From (27.1), for every h ∈ H, we have in particular

θ∗h∆xhD2uh(x∗
h)∆xh − θ∗h∆xhΦ(p∗)T ∆λh − θ∗h∆xhΛ̃∗

h∆p\ = 0,

and from (27.2) and (28), we obtain

θ∗h∆xhD2uh(x∗
h)∆xh = θ∗h∆zh

[
−q∗

R(p∗, y)

]T

∆λh + ∆xhΓ∗∆p\.

Using now (27.3) and observing that θ∗hλ∗
h(0) = γC∗(0), we get the equality

θ∗h∆xhD2uh(x∗
h)∆xh = γC∗(0)∆zh∆q + ∆xhΓ∗∆p\,

and summing up over h ∈ H and using (27.4) and (27.5), we obtain

H∑

h=1

θ∗h∆xhD2uh(x∗
h)∆xh = 0. (29)

9



Observe also that, for every h ∈ H,
Duh(x∗

h)∆xh = 0. (30)

Indeed, from (24.1), we obtain Duh(x∗
h)∆xh = λ∗

hΦ(p∗)∆xh, and then from (27.2), we get

λ∗
hΦ(p∗)∆xh = λ∗

h

[
−q∗

R(p∗, y)

]
∆zh = −µ∗

h∆zh = 0,

where the last two equalities follow by (24.3) and µ∗
h = 0, respectively. Define now the set

H∗ = {h ∈ H : ∆xh 6= 0},

and assume by contradiction H∗ 6= ∅. Since θ∗ ∈ R
H
++, we have that (3) and (30) imply

H∑

h=1

θ∗h∆xhD2uh(x∗
h)∆xh =

∑

h∈H∗

θ∗h∆xhD2uh(x∗
h)∆xh < 0. (31)

As (31) contradicts (29), we get H∗ = ∅, that is, for every h ∈ H, ∆xh = 0. Note also that, from (27.2)
and since R(p∗, y) has full rank, we immediately obtain that, for every h ∈ H, ∆zh = 0.

Let us show now that, for every h ∈ H, ∆λh = 0. From (27.1), we know that, for every h ∈ H,

−Φ(p∗)T ∆λh − Λ̃∗
h∆p\ = 0.

Then, for every h ∈ H, s ∈ S, we have −p∗C(s)∆λh(s) = 0 and hence ∆λh(s) = 0, as desired.
Finally, as, for every h ∈ H, ∆xh = 0 and ∆λh = 0, from (27.1) and (27.3), we immediately obtain

∆p\ = 0 and ∆q = 0, respectively. Then ∆ζ = 0 and the proof of (21) is complete.
In order to show (22), we show that each sequence

((
x

[n]
h , λ

[n]
h , z

[n]
h , µ

[n]
h

)

h∈H
, p[n], q[n], τ [n]

)

n∈N

=
(
x[n], λ[n], z[n], µ[n], p[n], q[n], τ [n]

)

n∈N

in H−1(0) admits a converging subsequence. As we are going to use a diagonal argument, every time we say
that a sequence converges we mean it has a converging subsequence. Of course, since {τ [n] : n ∈ N} ⊆ [0, 1],
(τ [n])n∈N converges to a certain τ ∈ [0, 1].

In order to prove the convergence of the sequence (x[n])n∈N, let us notice at first that, defined,

∀h ∈ H, n ∈ N, e
[n]
h = (1 − τ [n])eh + τ [n]x∗

h ∈ R
G
++ and eh = (1 − τ)eh + τx∗

h ∈ R
G
++,

we have that, for every h ∈ H, e
[n]
h → eh. In particular, there exists vh ∈ R

G
++ such that, for every n ∈ N,

e
[n]
h ≤ vh.

Fix now h ∈ H. Since, for every n ∈ N, x
[n]
h ∈ R

G
++ and (19) holds, we have

{x
[n]
h : n ∈ N} ⊆

{
xh ∈ R

G : 0 ≤ xh ≤

H∑

h=1

vh

}
= C1

h.

By (18), for every n ∈ N, we have

uh(x
[n]
h ) ≥ uh(e

[n]
h ) ≥ min

xh∈{e
[n]
h

:n∈N}∪{eh}

uh(xh) = uh(xh),

where xh is a suitable element of the compact set {e
[n]
h : n ∈ N} ∪ {eh} ⊆ R

G
++, and then

{x
[n]
h : n ∈ N} ⊆ {xh ∈ R

G
++ : uh(xh) ≥ uh(xh)} = C2

h.

From (4), C2
h is a closed subset of R

G, and then C1
h ∩ C2

h is a compact set contained in R
G
++. As

{x
[n]
h : n ∈ N} ⊆ C1

h ∩ C2
h, we have that (x

[n]
h )n∈N converges to an element of R

G
++, say xh, and then the
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convergence of (x[n])n∈N to an element of R
GH
++ is proved. From (17.1), (17.7) and (2) we find that, for

every h ∈ H, s ∈ S,

λ
[n]
h (s) = DxC

h
(s)uh(x

[n]
h ) → DxC

h
(s)uh(xh) = λh(s) ∈ R++,

and, from (17.1) and (2), it follows, for every s ∈ S,

p[n](s) =
Dxh(s)uh(x

[n]
h )

λ
[n]
h (s)

→
Dxh(s)uh(xh)

λh(s)
= p(s) ∈ R

C
++.

Then (λ[n])n∈N converges to an element of R
(S+1)H
++ and (p[n])n∈N converges to an element of R

G
++.

Fix now a ∈ A and consider the sequence (qa,[n])n∈N. We claim that it converges if there exist h ∈ H
and a sequence (nk)k∈N in N such that, for every k ∈ N,

z
a,[nk]
h + (1 − τ [nk])σa

h(p[nk], q[nk]) + τ [nk]ε > 0.

Indeed, if this is true, from (17.3) and (17.4) we get

qa,[nk] =
1

λ
[nk]
h (0)

S∑

s=1

λ
[nk]
h (s)p[nk](s)ya(s) →

1

λh(0)

S∑

s=1

λh(s)p(s)ya(s) = qa.

In order to show the claim, assume by contradiction that there exists ν ∈ N such that, for every h ∈ H,
n ≥ ν,

z
a,[n]
h + (1 − τ [n])σa

h(p[n], q[n]) + τ [n]ε = 0.

Summing up on h ∈ H, and using (17.6), we find

0 =
H∑

h=1

z
a,[n]
h + (1 − τ [n])

H∑

h=1

σa
h(p[n], q[n]) + τ [n]Hε = (1 − τ [n])

H∑

h=1

σa
h(p[n], q[n]) + τ [n]Hε.

From (7), the right hand side of the above equality has to be positive. Then the contradiction is found
and the convergence of (q[n])n∈N to an element of R

A follows. Fix now h ∈ H, a ∈ A and consider the

sequence (z
a,[n]
h )n∈N. For every n ∈ N, we have

−(1 − τ [n])σa
h(p[n], q[n]) − τ [n]ε ≤ z

a,[n]
h = −

∑

h′∈H,h′ 6=h

z
a,[n]
h′ ≤

∑

h′∈H,h′ 6=h

(
(1 − τ [n])σa

h(p[n], q[n]) + τ [n]ε
)

,

and, since τ [n] → τ , p[n] → p, q[n] → q and (5) holds true, there exist Ka
h,K

a

h ∈ R such that, for every
n ∈ N,

Ka
h ≤ z

a,[n]
h ≤ K

a

h.

Thus z
a,[n]
h → za

h and the convergence of (z[n])n∈N to an element of R
AH is proved. Finally, fix h ∈ H,

a ∈ A and study the convergence of the sequence (µ
a,[n]
h )n∈N. From (17.3) we immediately obtain

µ
a,[n]
h = λ

[n]
h (0)qa,[n] −

S∑

s=1

λ
[n]
h (s)p[n](s)ya(s) → λh(0)qa −

S∑

s=1

λh(s)p(s)ya(s) = µa
h,

and the convergence of (µ[n])n∈N to an element of R
AH is proved. Then the proof of (22) is complete.

Proof of Theorem 3. Let us consider at first the properties of Y2. If A > C, then we immediately have
Y2 = ∅. Assume then A ≤ C. The fact that Y2 is open can be proved as follows. Observe that

Y2 =
⋃

K⊆{1,...,S},|K|=A

Y2(K) (32)
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where, for every K ⊆ {1, . . . , S} such that |K| = A,

Y2(K) =
{

y ∈ R
CAS : ∀s ∈ K, rank

(
[ya,c(s)]c∈C,a∈A

)
= A

}
.

Note that, for every K ⊆ {1, . . . , S} such that |K| = A, the following equality holds

R
CAS \ Y2(K) =

⋃

s∈K

(
⋂

I⊆C,|I|=A

{
y ∈ R

CAS : det
(
[yc,a(s)]c∈I, a∈A

)
= 0
})

. (33)

As the right hand side of (33) is a closed subset of R
CAS , it follows that Y2(K) is an open subset of R

CAS

and then, from (32), Y2 is an open subset of R
CAS , as well.

In order to prove that Y2 is a full measure subset of R
CAS , it is sufficient to show that the subset of

Y2 defined as

Y3 =
{

y ∈ R
CAS : ∀s ∈ {1, . . . , S}, rank

(
[ya,c(s)]c∈C,a∈A

)
= A

}

is a full measure subset of R
CAS . To this end, we only need to show that, for every s ∈ {1, . . . , S}, 0 is a

regular value for the map Ψs : R
A × R

CAS → R
C+1, defined as

Ψs(v, y) =




[ya,c(s)]c∈C,a∈A v

1
2v · v − 1




In fact, if that is true, from Theorem 4 we have that, for every s ∈ {1, . . . , S}, there exists a full measure
subset Y3(s) of R

CAS such that, for every y ∈ Y3(s), 0 is a regular value for the function Ψs
y : R

A → R
C+1,

v 7→ Ψs(v, y). Since A < C + 1, that is equivalent to say that, for every y ∈ Y3(s),

{v ∈ R
A : Ψs(v, y) = 0} = ∅,

that is,

rank
(
[ya,c(s)]c∈C,a∈A

)
= A.

As ∩S
s=1Y3(s) ⊆ Y3, Y3 has full measure in R

CAS . Thus we are left with proving that, for every s ∈
{1, . . . , S}, 0 is a regular value for Ψs, that is, if (v, y) ∈ R

A ×R
CAS satisfies Ψs(v, y) = 0, then DΨs(v, y)

has full rank. This fact immediately follows by the structure of DΨs(v, y).
Let us prove now the inclusion R

GH
++ ×U ×Y1 ×Σ ⊆ E⋄. Consider then (e, u, y, σ) ∈ R

GH
++ ×U ×Y1 ×Σ

and let K ⊆ {1, . . . , S}, with |K| = A, and α : {1, . . . , S} → C such that (11) and (12) hold. As P(u) 6= ∅

and, for every x1 ∈ R
G
++,

rank (R(Du1(x1), y)) = rank

([
ya,α(s)(s)

]

s∈K,a∈A

)
= A,

it immediately follows that (e, u, y, σ) ∈ E⋄.
Finally, let us show the inclusion R

GH
++ × U × Y2 × Σ ⊆ E⋄. This is obvious if A > C, as Y2 = ∅.

Assume then A ≤ C, fix (e, u, y, σ) ∈ R
GH
++ × U × Y2 × Σ and prove it belongs to E⋄. First of all, let us

recall that, given (r, u) = (r, u2, . . . , uH) ∈ R
G
++ × R

H−1, if the maximization problem

max
x∈RGH

++

u1(x1) s.t.





uh(xh) = uh, h ≥ 2

H∑

h=1

xh = r
(34)

has a feasible solution, then it has a unique optimal solution x∗ which is Pareto Optimal for u and there
exists (θ∗, γ∗) ∈ R

H × R
G such that (x∗, θ∗, γ∗) solves the system





θhDuh(xh) − γ = 0

uh(xh) − uh = 0, h ≥ 2

θ1 − 1 = 0

−
H∑

h=1

xh + r = 0

(35)
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Conversely, if there exists (x∗, θ∗, γ∗) solving System (35), then x∗ is the unique optimal solution to
Problem (34) and it is a Pareto Optimal allocation for u. Consider then K ⊆ {1, . . . , S}, with |K| = A,
such that (13) holds and define the function

Φ : R
GH
++ × R

H × R
G × R

A × R
G
++ × R

H−1 → R
GH+H+G+A+1

Φ(x, θ, γ, v, r, u) =




(36.1) θ1Du1(x1) − γ

(36.2) θ1 − 1

(36.3) θhDuh(xh) − γ, h ≥ 2

(36.4) uh(xh) − uh, h ≥ 2

(36.5) −
H∑

h=1

xh + r

(36.6) RK(γ, y)v

(36.7) 1
2vv − 1




(36)

where RK(γ, y) is the matrix built by considering only the rows of R(γ, y) whose index is in K. Of course
RK(γ, y) ∈ M(A,A). Let us prove now that 0 is a regular value of Φ.

The Jacobian of Φ is described by the table below, where h ≥ 2. The rank computation is performed
through row and column operations. The starred matrices are full row rank matrices that we employ to
“clean up” its super-row, since all the other elements of its super-column are null. A suitable order in
which the appropriate elementary super-column operations have to be performed is the one indicated in
the last column of the table.

x1 θ1 xh θh uh r γ v

(36.1) θ1D
2u1(x1)∗ Du1(x1) −IG 2

(36.2) 1∗ 3
(36.3) θhD2uh(xh)∗ Duh(xh) −IG 2
(36.4) Duh(xh) −1∗ 3
(36.5) −IG −IG IG∗ 1
(36.6) M(y, v)∗ RK(γ, y) 4
(36.7) v∗ 5

Of course, we are left with showing that the matrix M(y, v) indeed has full row rank. If we write

M(y, v) =
[(

m0
s′(y, v),m1

s′(y, v), . . . ,mS
s′(y, v)

)]
s′∈K

∈ M(A,G),

where
∀ s′ ∈ K, s ∈ S, ms

s′(y, v) ∈ R
C ,

∀ s′ ∈ K,
(
m0

s′(y, v),m1
s′(y, v), . . . ,mS

s′(y, v)
)
∈ R

G,

then a simple computation shows that

ms
s′(y, v) =





∑

a∈A

ya(s′)va if s′ = s

0 if s′ 6= s

Then, using Assumption (13), the full row rank property of M(y, v) immediately follows.
Applying now Theorem 4, we find there exists a full measure subset D of R

G
++ × R

H−1 such that, for
every (r, u) ∈ D, 0 is a regular value of the function

Φ(r,u) : R
GH
++ × R

H × R
G × R

A → R
GH+H+G+A+1, (x, θ, γ, v) 7→ Φ(x, θ, γ, v, r, u).

As a consequence, for every (r, u) ∈ D,

{(x, θ, γ, v) : Φ(x, θ, γ, v, r, u) = 0} = ∅.
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From the above considerations, we are done if we prove that Ψ(RGH
++ ) ∩ D 6= ∅, where

Ψ : R
GH
++ → R

G
++ × R

H−1, x 7→

(
H∑

h=1

xh, (uh(xh))H
h=2

)
.

It is immediate to prove that, for every x ∈ R
GH
++ , DΨ(x) is surjective. Then Ψ(RGH

++ ) is an open subset
of R

G
++ × R

H−1 and indeed Ψ(RGH
++ ) ∩ D 6= ∅.
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