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Abstract

This paper studies information aggregation in markets for perfectly divisible goods

with an arbitrary, possibly small, number of strategic traders. When trader valuations

are heterogeneously correlated, a trade-o¤ in information aggregation between small

and large markets exists. As a result, small markets might o¤er better opportunities to

learn from prices and be more e¢ cient in aggregating information than large markets,

in relevant economic environments. This paper provides the necessary and su¢ cient

conditions for the monotonicity of price informativeness. The mechanisms underlying

the trade-o¤s between small and large markets are characterized, and implications

for market design are analyzed.

JEL classification: D44, D82
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1 Introduction

In many economic settings, traders do not perfectly know the value of the good traded,

but each has some private information regarding that value. In these settings, markets are

commonly viewed as serving a dual role. In addition to providing buyers and sellers with an
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opportunity to exhaust gains to trade, markets also allow traders to learn about the value of

the good through a price mechanism, thereby improving their estimates and decisions. The

literature on information aggregation has delivered strong results for large markets, where

traders are approximately competitive. From rational-expectations or strategic models with

a large number of traders,1 we understand well the mechanisms through which large markets

aggregate and transmit private information to market participants. In many markets,

however, trade takes place among a small number of strategic traders. Important examples

include �nancial markets such as intra-dealer markets, open-market operations by central

banks, and numerous oligopolistic markets in which a few companies trade with a few

supermarket chains. This paper shows that small markets may o¤er traders opportunities to

learn from prices that large markets do not. Therefore, trade-o¤s in information aggregation

and e¢ ciency between small and large markets may exist.

To hint at the origin of the trade-o¤ in information aggregation between small and

large markets, consider the classical market setting: an arbitrary, possibly small, number of

agents trade a perfectly divisible good, such as an asset, electricity, gold, emission permits

etc. Each agent is uncertain about the true value of the good to him; a noisy signal

provides an imperfect estimate of how much the good is worth to each agent. Suppose

a new trader enters the market. In a now-larger market, would the remaining traders

be able to better estimate their unknown values? With market design in mind, what is

optimal for information aggregation market size? A new participant adds to the pool

of information available in the market; the additional piece of information is useful in

inference for other traders whenever values are correlated. The literature on small markets

has focused on settings in which an underlying fundamental value of the good (modulo

idiosyncratic shocks) determines the values of all traders. The existing small-market results

show that markets are informationally e¢ cient, in that all of the payo¤-relevant information

available in the economic system is revealed in prices (Dubey, Geanakoplos, and Shubik

(1987); Vives (2009)). It follows that information brought by every additional trader is

revealed in price, and that the informativeness of price to all market participants builds up

as market grows. This paper contributes to the literature on information aggregation in

markets with strategic traders by showing that these predictions may change dramatically

in markets that feature more general interdependencies in values. In particular, when

traders�values are correlated but heterogeneously so, traders may learn little from prices

about their values, and smaller markets might provide superior learning opportunities.

A recent body of literature studies heterogeneity in information structures that stems

1Grossman (1989), Brunnermeier (2001) and Vives (2008) provide comprehensive reviews of this volu-
minous body of research.
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from informational linkages: correlation of signal noisiness varies across pairs of traders

(e.g., Colla and Mele (2010)). In these models, there is a fundamental value of a good

and price is a su¢ cient statistic for the signals of all other traders. In this paper, het-

erogeneity derives from values rather than information� interdependence of values may

di¤er across pairs of traders. As we show, price is typically not a su¢ cient statistic, which

qualitatively changes the information aggregation properties. Heterogeneity in how trader

values commove is inherent in many informationally decentralized markets or networks,

and comovements in values within small groups of traders contain information that can

potentially be useful in inference. Indeed, �local�shocks provide the sole source of learning

from prices in some markets.2

We investigate interaction between the heterogeneity and learning from prices in a

market modeled as a uniform-price double auction. All traders (buyers and sellers) are

Bayesian and strategic. In a linear-normal setting, we analyze Bayesian Nash equilibria in

which traders submit bid schedules that are linear in price. The model permits a rich class

of interdependencies among agents�values of the traded good. This allows accommodating

environments common in economic analysis, including: markets in which correlation among

values varies with distance between agents; markets with value dependence within but not

across groups of agents; or networks with size externalities on interdependence among

values. Moreover, unlike models in which trader values derive from a common fundamental

value, negative dependence of values is permitted here. We postpone the discussion of

related literature until after a full development of our model.

We now summarize the main results. We begin by asking whether prices aggregate

and convey to traders all private payo¤-relevant information available in the market� if

so, larger markets would always transmit more information to traders. We �nd that the

information available in the market is aggregated if, and only if, correlation between values

is the same for all pairs of traders; for instance, when it is induced by aggregate shocks

that a¤ect the fundamental value of the traded good. This holds in both small and large,

limit markets. The result resonates with the conclusions of Vives (2009), who argued that

strategic interactions (on one side of the market) do not obscure information aggregation.

Our result complements the full-aggregation predictions of Vives by underscoring the role

of heterogeneity in interdependence of trader values.

Given that markets do not generically aggregate all the available information, price

informativeness about trader values need not improve with market size. We establish the

2E.g., Coval and Moskowitz (2001); and Harrison, Kubik, and Stein (2004). Veldkamp (2009) provides
an overview of the empirical evidence.
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necessary and su¢ cient conditions for the marginal contribution of a market participant to

price informativeness to be positive. At the heart of the conditions lies interdependence of

values: whether and how a new market participant impacts price informativeness depends

upon the e¤ect that his participation has on the comovement in values among all traders,

measured by the average correlation. Price can become more informative with a new trader

even if values become, on average, less aligned in the larger market. Further, while how

much traders can learn through market is governed by the average correlation of values, the

potential to learn outside of the market (from the information that is contained in signals

but is not revealed in price) depends on heterogeneity in correlations. We �nd not only

that prices in smaller markets may be more informative than in large markets, but also

that small markets may be more e¢ cient in aggregating total available information. We

analyze and contrast how the optimal for price informativeness and informational e¢ ciency

market sizes vary with market primitives.

The informational ine¢ ciency and the lack of monotonicity of price informativeness in

many markets leads us to further inquire into the sources of the small markets�advantage

in aggregating information. What component of information about values that is lost in

large auctions is revealed in small auctions? We show that, in the considered class of

auctions, individual values can be uniquely decomposed into a common value component

(which need not result from an aggregate shock) and residuals. The qualitative di¤erence

in information aggregation properties between small and large markets is due to the ability

of small� but not large� markets to partially aggregate �local� information contained in

the residuals; large auctions reveal information contained in the common value component

alone. Moreover, in certain environments, small auctions might o¤er opportunities to learn

through noise.

Finally, we show that, for the class of preferences considered in this paper, the results

on informativeness of equilibrium prices extend beyond double auctions to a larger class of

models, competitive and strategic, including one-sided auctions.

The paper is organized as follows. Section 2 lays out the model of a double auction.

Section 3 establishes the key properties of equilibrium. Section 4 provides an analysis

of how information aggregation varies with market size, and evaluates the e¤ectiveness of

learning though markets. Section 5 investigates the determinants of trade-o¤ in information

aggregation between small and large markets. Section 6 extends the results to other models

of market interactions. Section 7 concludes. Proofs of all results are contained in the

Appendix.
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2 A Model of Double Auction

Consider a market of a divisible good with I � 2 traders. We model the market as a double
auction in the familiar linear-normal setting. Trader i has a quasilinear and quadratic utility

function

Ui(qi;mi) = �iqi �
�

2
q2i +mi; (1)

where qi is the obtained quantity of the good auctioned, mi is money, and � > 0. Each

trader is uncertain about how much the good is worth to him. Trader uncertainty about

the value of the good is captured by randomness of f�igi2I . The key novel feature of the
model involves the richness of interdependencies among the intercepts of marginal utility

functions f�igi2I , referred to as values, as described next.

Information Structure. Prior to trade, each trader i observes a noisy signal about his

own true value �i, si = �i + "i. Randomness in �i is interpreted as arising from shocks to

preferences, endowment or any other shock that shifts the marginal utility of a trader. As

long as the values f�igi2I are correlated among agents, the signals of i�s trading partners
fsjgj 6=i contain useful information about �i. The equilibrium price will be shown to reveal

to each trader i some of such information about �i beyond the information contained in

si. This gives rise to learning from market prices. To preserve the linearity of the model,

we adopt the a¢ ne information structure: Random vector f�i; "igi2I is jointly normally
distributed, noise "i is mean-zero i.i.d. with variance �2", and the expectation E (�i) and

the variance �2� of �i are the same for all i. The variance ratio �
2 � �2"=�

2
� measures

the relative importance of noise in the signal. The I � I variance-covariance matrix of

the joint distribution of values f�igi2I , normalized by variance �2�, speci�es the matrix of
correlations,

C �

0BBBB@
1 �1;2 ::: �1;I

�2;1 1 ::: �2;I
...

...
. . .

...

�I;1 �I;2 ::: 1

1CCCCA : (2)

Lack of any correlation among values corresponds to the independent (private) value (IPV )

model, �i;j = 0 for all i 6= j. At the other extreme, perfect correlation of values for all

agents, �i;j = 1 for all i 6= j, yields the pure common value model of a double auction (e.g.,

the classic model by Kyle (1989), which also has noise traders). In a recent contribution,

Vives (2009) relaxed the strong dependence, while still requiring that the values of all

trader pairs in the market commove in the same way, �i;j = �� 2 [0; 1] for all i 6= j. This

speci�cation �ts well markets in which there is an underlying fundamental value of the good
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that de�nes the values of all traders� a typical feature in many asset-pricing or macro

models. Nevertheless, the speci�cation precludes markets in which preferences of some

agents commove more closely than others. Our model allows comovement of values �i;j to

be heterogeneous across all pairs of agents in the market. To ensure that equilibrium price

is equally informative across agents� which is necessary for the symmetry of equilibrium

and, hence, tractability of the model� we require that, for each trader i, his value �i be on

average correlated with other traders�values �j, i 6= j, in the same way,

1

I � 1
X
j 6=i

�i;j = ��; (3)

for some �� 2 [�1; 1]; that is, in each row (and column) in C, the average of the o¤-
diagonal elements is the same. �� measures how a trader�s value commoves on average with

the values of all the other traders in the market. Given the restriction that the average

correlation be the same across traders, �� can be viewed as measuring the commonality in

values of the traded good to market participants. We call the family of all auctions that

satisfy condition (3) equicommonal. While restrictive, the class of equicommonal auctions

subsumes a variety of economic environments beyond those with common �i;j = ��. Let us

introduce four examples of equicommonal auctions, which we use in the analysis to illustrate

results. As a benchmark, we consider a model with identical pairwise correlations.

Example 1 (Uniform Correlations Model) Values are equally correlated for all

pairs of traders in a market; that is, �i;j = �� for all i 6= j.

A stochastic process that results in uniform correlations and is often assumed in macro

and �nance literature involves aggregate shocks that determine (commovements in) pref-

erences of all traders who are also subject to idiosyncratic shocks. The aggregate shocks

could involve shocks to an aggregate endowment, monetary shocks, shocks in oil prices or

other asset fundamentals.

In many markets, correlation in endowments or preferences varies with geographical or

cultural proximity in a systematic way. This can be conceptualized in a spatial model in

which correlation of values decays according to distance among agents.

Example 2 (Circle City Model) I traders are located on a circle. The distance be-
tween any two immediate neighbors is normalized to one. Let di;j be the shorter of the two

distances between traders i and j (measured along the circle). To capture that values of

closer neighbors commove more, correlation between any two traders �i;j is assumed to be

decaying with distance, �i;j = �di;j , where � 2 (0; 1) is a decay rate.
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Often one can identify distinct groups of agents, such that correlation of values among

members of a given group exceeds the average in the market. For instance, in markets

with consumers and producers, (utility) parameters of consumers and (cost) parameters of

producers tend to commove more strongly within than across the two groups.3 Similarly,

income, endowment or liquidity needs are all likely to be more correlated among traders

from the same city (or country, or social network), rather than across di¤erent cities. This

motivates the Twin Cities model.

Example 3 (Twin Cities Model) There are two groups of traders of equal size, A

and B, called cities (interpreted as neighborhoods, clubs, social a¢ liations etc.); the total

number of traders adds up to an even number I. The values that members of each city derive

from the good are perfectly correlated (�i;j = 1); cross-group correlation can be positive or

negative, or values can be independent (�i;j = �; � 2 [�1; 1]).

Unlike the Circle City model, the Twin Cities model permits negative (average) corre-

lation of values. A model with negative correlations � < 0 accommodates interactions in

which groups of traders compete for a pool of resources outside of the market (for instance,

government transfers), and the division of the pool is uncertain during the trade stage. In

the extreme case of � = �1, the pool is �xed.4

Examples 1-3 all preserve symmetry in that, for each agent, the residual market is ex

ante identical (assuming anonymity). The next example permits types of asymmetry that

preserve equicommonality in the comovement of values.

Example 4 (Asymmetric Correlations Model) There are I=3 traders in city A,
and (2I) =3 traders in city B, and I is a multiple of 3. Correlation of trader values di¤ers

between the two city: �i;j = 1 if i; j 2 A and �i;j = (I � 3) = (2I � 3) if i; j 2 B: For any

pair of traders from distinct cities, values are uncorrelated (�i;j = 0).

The analysis is carried out at the level of correlations of values f�igi2I speci�ed by matrix
C, rather than underlying shocks that determine the joint distribution of values. Our results

3In Section 6, we extend the model with utility maximizers to double auctions with producers and
consumers.

4Consider the following example. Let traders be characterized by a quasilinear utility function

Ui(qi;mi) = (qi + ti)�
1

2
� (qi + ti)

2
+mi; (4)

where qi is the quantity of a good obtained from trade in the market and ti is the uncertain-at-the-time-
of-trade transfer of a commodity determined by the government. This model gives rise to preferenecs as
in (1), up to a constant, where �i � 1� �ti. A model with a balanced government budget (a �xed pool of
resources), tA = �tB , corresponds to � = �1. In a model in which tA and tB are determined independently,
� = 0. Imperfect negative correlation of transfers gives rise to � 2 (�1; 0).
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hold for any data-generating process that gives rise to an equicommonal correlation matrix

C.

A Sequence of Auctions. Of central interest in the paper are market-size e¤ects and the

comparison between small and large markets. Therefore, instead of taking as the object

of analysis an auction with a �xed number of traders, we analyze sequences of auctions

indexed by the number of participants
�
AI
	1
I=1
. In all auctions in the sequence, the utility

function remains unchanged. What changes is the number of traders I and, crucially, the

equicommonal matrix C may vary with market size in an arbitrary way; the commonality
�� itself may change with market size, and so may other details of the correlation matrix.

For a compact notation for a sequence of auctions, we de�ne a measure of market size as

a monotone function of the number of traders,

 =
I � 2
I � 1 : (5)

Index  ranges between zero for I = 2 and one as I ! 1. A sequence of auctions

can now be conveniently summarized by the commonality function �� (), which speci�es

commonality for any market size and can be a non-trivial function of . Throughout, we

refer to auctions with  < 1 as small and reserve the term large for limits as  ! 1.

In the four examples above, the sequences of auctions are structured as follows. In

the Uniform Correlations model, a new trader is neutral for commonality of values in that

correlation of an entrant with each incumbent is equal to ��; the commonality function

is given by ��UC () = ��. The Circle City model takes as a primitive the decay rate �

and assumes that a new trader enlarges the market by increasing the circumference of

the circle by one.5 This allows analysis of market interactions where trader preferences

become less and less alike as market expands. The commonality function is decreasing in

market size, ��CC () = 2 (1� ) �
�
1� �

1
2

1
1�

�
= (1� �), assuming that I is an odd number.

In the Twin Cities model, additional traders increase population in both neighborhoods,

and the commonality function is given by ��TC () = ( + (2� )�) =2. Finally, in the

Asymmetric Correlations model, new traders preserve the population ratio for the two

cities and correlations; commonality ��AC = (2 � 1) = (6� 3) is monotonically increasing
to 1

3
.

5W.l.o.g. a trader can be added at an arbitrary position on a circle. Alternatively, one could assume
that the circumference is �xed and that additional traders increase the density of the population. Such a
formulation would imply that preferences commove more closely in pairs of traders in larger markets and,
therefore, would not capture the decaying in distance commonality, which we intend to analyze.
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Double Auction. We study double auctions based on the canonical uniform-price mech-

anism. Traders submit strictly downward-sloping (net) demand schedules, fqi(p)gi2I ; the
part of a bid with negative quantities is interpreted as a supply schedule. The market-

clearing price p� is one for which the aggregate demand Q(p) �
P

i2I qi(p) equals zero,

Q(p�) = 0. Trader i obtains the quantity determined by his submitted bid evaluated at

the equilibrium price, q�i = qi(p
�), for which he pays q�i � p�. The trader payo¤ is given by

the utility function (1) evaluated at (q�i ; p
�). As a solution concept, we use the symmetric

linear6 Bayesian Nash equilibrium (henceforth, �equilibrium�).

The Walrasian auction is commonly viewed as a natural model for the study of aggrega-

tion of information in markets� it allows traders to make trade choices that are contingent

on prices (e.g., limit or stop orders); thus, even though the game is static and traders choose

their strategies before (without) knowing the equilibrium price, traders can use information

contained in prices by tailoring their choices to di¤erent prices and, hence, states of the

world. Thus, a Walrasian auction allows studying the feedback between Bayesian updating

and strategic considerations. This contrasts, for instance, with the Cournot competition

in quantities, where traders can learn from prices but cannot incorporate the information

conveyed by prices into their bids.

Finally, a noteworthy feature of our double-auction model is that all traders� buyers

and sellers� are Bayesian and strategic in that they (endogenously) have price impact and

take it into account in their trading decisions.7

3 Equilibrium in Double Auctions

This section characterizes equilibrium.

3.1 Su¢ ciency of Commonality

We begin by identifying a feature in the structure of equilibrium that will be useful in

the analysis. Lemma 1 establishes that commonality �� identi�es equilibrium bids in that,

6The assumption that bids be strictly downward-sloping rules out trivial (no-trade) equilibria. In our
model, �symmetric linear�means that bids have the functional form of

qi (p) = �0 + �ssi + �pp; (6)

and that the coe¢ cients �0, �s, and �p are the same across traders.
7This distinguishes the present paper�s model from those by Kyle (1989) and Vives (2009). As Kyle

(1989) demonstrated, with pure common values, price is too informative for equilibrium to exist; to
re-establish existence, Kyle lowered price informativeness by introducing noise traders, who are neither
Bayesian nor take into account price impact. Vives (2009) considered a market with one-sided market
power, with strategic Bayesian sellers and price-taking buyers.
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ceteris paribus, the class of double auctions that share the same commonality �� and have

an otherwise arbitrary equicommonal correlation matrix have the same set of equilibria.

Lemma 1 (Sufficient Statistic for Equilibrium) Let C and C 0 be two equicom-
monal correlation matrices with commonality ��. Then, other primitives being the same, a

bid pro�le fqi (�)gi2I is a symmetric equilibrium in a model with C if, and only if, it is a
symmetric equilibrium in a model with C 0.

For instance, if any two of the models from Examples 1-4 give rise to the same com-

monality ��, the equilibria are the same. That the commonality is a su¢ cient statistic

for equilibrium derives from the fact that signals a¤ect price only through their average,8

which in turn comes from the symmetry of linear equilibrium bid functions (see equation

(16) in Section 3.3). Lemma 1 allows one to derive equilibrium and fully characterize price

informativeness for classes of equicommonal auctions with the same commonality, in ab-

straction from details of a correlation matrix other than statistic ��. We should stress that,

while �� identi�es equilibrium, it does not determine all the properties of equilibrium. The

same equilibria may exhibit di¤erent properties, depending on details of correlation matri-

ces distinct from the commonality. In particular, heterogeneity in comovement of values

across trader pairs will be shown as instrumental in determining informational (in)e¢ ciency

(Section 4.3).

3.2 Existence of Equilibrium

When traders learn from prices in a double auction, they shade their bids relative to the

bids they would submit if the market were competitive and values were independent private

(�i;j = 0 for i 6= j). The steepening of equilibrium bids arises from two considerations, the

traders�price impact and the fact that price is informative about f�igi2I . As is well known
(e.g., from Kyle (1989)), such steepening cannot be too strong for equilibrium to exist.

Analogously, we derive an upper bound on commonality, which in terms of primitives is

given by

��+
�
; �2

�
=
2 � 2(1� )�2 + (1� )

r
4�4 +

�
 2�
1�

�2
2

> 0: (8)

8Along with the linearity of the covariance operator, which implies that in an equicommonal auction,
covariance of �i with the average signal depends on C only via the average correlation,

cov (�i; �s) =
1

I
cov (�i; si) +

I � 1
I

���2�: (7)
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For  = 0, the upper bound is de�ned as the limit of (8) as  ! 0, i.e., ��+ (0; �2) � 0.

Moreover, in no stochastic process can the average correlation �� be smaller than the lower

bound of9

���() = � 1

I � 1 = � (1� ) < 0: (9)

Thus, only markets with a �nite number of traders admit a negative commonality. Proposi-

tion 1 provides the necessary and su¢ cient conditions under which the linear Bayesian Nash

equilibrium exists in equicommonal double auctions; in particular, commonality has to be

strictly between the two bounds. The conditions are assumed thereafter in the analysis.

Proposition 1 (Existence of Equilibrium)In an equicommonal double auction, a
symmetric linear Bayesian Nash equilibrium exists if, and only if,

��� () < �� < ��+
�
; �2

�
: (10)

The symmetric equilibrium is unique.

Note that bounds (8) and (9) apply to the average correlation of values, and pairwise

correlations in the auction can be arbitrarily high or low. For example, while equilibrium

does not exist in double auctions with pure common values, the Twin Cities model with

pure common values within groups of traders (and imperfectly correlated values across

groups) admits equilibrium.

It is instructive to relate Proposition 1 to general existence results for the class of pure-

strategy monotone Bayesian Nash equilibria. Speci�cally, explaining why Proposition 1

does not follow from these results highlights mechanisms distinctive to perfectly divisible-

good double auctions. Take a simple example with two traders ( = 0) and independent

private values (�� = 0). By Proposition 1, equilibrium does not exist as the upper-bound

condition is violated. The mechanism underlying the non-existence is the following: It can

be shown that the slope of the best response to an arbitrary (inverse) bid of the opponent is

strictly greater than the slope of the opponent�s (inverse) bid. Hence, there does not exist

a Nash equilibrium in which both inverse bids have �nite slopes. However, vertical bids

are not in the set of strategies, which comprises downward-sloping bid functions.10 The

mutual steepening is a robust feature of the uniform-price mechanism in games with demand

9V ar
�
1
I

P
i2I �i

�
= 1

I2

�
I�2� + (I � 1) I���2�

�
. V ar

�
1
I

P
i2I �i

�
� 0 if, and only if, �� � ��� ().

10More formally, the set of downward-sloping linear bid functions is not compact with respect to any
topology for which payo¤s are continuous. Compactness of strategy set is assumed by the available theorems
for existence of non-trivial (trade) pure-strategy Bayesian Nash equilibria. While including vertical bids
would close the strategy set, with vertical bids price is no longer de�ned by market clearing. Specifying
an allocation rule to complete the de�nition of equilibrium would yield a no-trade equilibrium. This paper
focuses on non-trivial equilibria.
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functions as strategies. Additionally, when values are (on average) positively correlated,

the mutual steepening of best responses is enhanced by price informativeness. The upper

bound in condition (10) assures that both e¤ects are moderate and that there exist bids with

�nite slopes that are mutual best responses. The lower bound assures that the conditional

expectation exists.

By Lemma 1, other primitives being the same, all equicommonal auctions with the same

statistics (; ��) have the same equilibria. The class of all such auctions can be represented

as a point in the Cartesian product [0; 1] � [�1; 1].11 Condition (10) speci�es upper and
lower bounds on commonality for any market size. In Figure 1A, for all auctions located

on and above curve ��+(; �2), price is too informative for equilibrium to exist. There are

no auctions that are represented by points located below bound ���(); for points on ���(),

the conditional expectation does not exist. The two bounds are tight� for any pair (; ��)

that satis�es the strict inequalities (10), one can �nd an auction for which equilibrium

exists. A sequence of equicommonal auctions
�
AI
	1
I=1

is represented by the corresponding

commonality function �� (), which keeps track of how the varying details of the correlation

matrices in the sequence convert into changes in commonality (Figure 1B).

Proposition 1 has the following implications for the equicommonal models introduced

in Section 2. With two traders, equilibrium fails to exist in the Uniform Correlations

model with non-negative ��, and in the Circle City model. In the Twin Cities model with

� = �1, equilibrium does not exist, regardless of the number of traders. (Sometimes, we

will consider a model with � ' �1, by which we mean the limit as �! �1.)

3.3 Equilibrium Inference and Bids

When estimating his value �i, a trader uses statistical information contained in his private

signal si and equilibrium price p�. This section characterizes how the inference is re�ected

in equilibrium bids.

Given the linearity of equilibrium bids and the a¢ ne information structure, for each

trader i, the posterior of �i conditional on p� and si is normally distributed and fully

described by the �rst two moments. The conditional expectation is linear in p� and si. As

shown in the Appendix, the equilibrium price is equal to p� = (1=I)
P

i2I E(�ijsi; p�). By
the law of iterated expectations, the unconditional expected price is equal to E(p�) = E(�i),

11More precisely,  takes values from a countable subset of [0; 1] given by

� � f 2 [0; 1]j = (I � 2) = (I � 1) for I = 2; 3; :::g : (11)

Commonality function maps �� (�) : �! [�1; 1]. The space of equicommonal auctions is given by a Cartesian
product �� [�1; 1].
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and the posterior expectation E(�ijsi; p�) can be written as

E(�ijsi; p�) = c�E(�i) + cssi + cpp
�; (12)

where c� = 1� (cs + cp).

Substituting for expectation from (12) into price p�, and using that in the symmetric

equilibrium inference coe¢ cients cp and cs are common to all traders, gives the price

p� (s) =
1� (cp + cs)

1� cp
E(�i) +

cs
1� cp

�s; (13)

where �s � 1
I

P
i2I si. In a symmetric equilibrium, price p

� (s) is a deterministic function

of� and hence perfectly reveals� the average signal �s. The expectation and the variance

of the normal vector (�i; si; p�) can then be expressed in terms of inference coe¢ cients

cp and cs and the primitive parameters. The projection theorem then allows �nding the

parameters of the model (12) in closed form (see Appendix),

cs =
1� ��

1� ��+ �2
; (14)

cp =
(2� ) ��

1�  + ��

�2

1� ��+ �2
: (15)

Given commonality ��, market size  itself also shapes inference coe¢ cients cs and cp,

because the number of traders determines the number of signals, which, in turn, a¤ects price

informativeness. Having endogenized the traders�model of expectations, fully described in

terms of market primitives by (12) with (14) and (15), one can derive equilibrium bids.

Proposition 2 (Equilibrium Bids) The equilibrium bid of trader i is

qi (p) =
 � cp
1� cp

c�
�
E (�i) +

 � cp
1� cp

cs
�
si +

 � cp
1� cp

1

�
p: (16)

4 Information Aggregation

In this section, we address the main question of the paper: How does the size of a market

a¤ect the market�s ability to aggregate information dispersed among traders? A logically

prior question is that of informational e¢ ciency of markets; for if markets aggregated all

the available information, larger markets would convey to traders more information than

smaller markets. We show that, generically, markets are not e¢ cient (Section 4.1). We

then examine how much payo¤-relevant information about �i is conveyed in price and
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give conditions under which price informativeness increases with a new market participant

(Section 4.2). Finally, we analyze how much information is lost in the aggregation process

and how the loss depends on the correlation matrix, as well as the size of the market

(Section 4.3).

4.1 Informational E¢ ciency

As such, the overall information available in a market increases with every new trader. In

informationally e¢ cient markets, information contained in the traders�signals is fully incor-

porated in price, and price informativeness builds up as market grows. We now characterize

which equicommonal markets are informationally e¢ cient. The question about informa-

tional e¢ ciency of markets is important in its own right and has attracted attention of

researchers at least since the debate between Hayek and Lange. That markets aggregate

private information dispersed among traders, which is not available to the planner, was one

of Hayek�s key arguments in favor of free (large) markets.

Following the tradition from the rational-expectations literature, we conceptualize in-

formational e¢ ciency by means of a privately12 revealing price. Setting a market against a

benchmark where each agent learns his value �i would be too stringent an e¢ ciency crite-

rion, as such information is not available in the economic environment. The total available

information corresponds to the pro�le of all signals of all traders, s � fsigi2I ; it �might
have been arrived at by one single mind possessing all the information which is in fact

dispersed among all the people involved in the process� (Hayek, 1945, p. 526). Every

Bayesian player i, who also observes his own signal si, can learn about his value �i from

a privately revealing price as much as he would if he had access to all the information

available in the market, s.

De�nition 1 Equilibrium price is privately revealing if, for any trader i, the conditional

distribution of the posterior of �i satis�es

F (�ijp�; si) = F (�ijs) (17)

for every state s and the corresponding equilibrium price p� = p� (s).

If price conveys all the available information to market participants, the signals of other

agents contain no useful information for trader i beyond the information contained in price

and his own signal. Proposition 3 characterizes which double-auction settings are e¢ cient

in this sense.
12�Privately� indicates that price reveals all the available information for trader i if combined with his

signal si.
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Proposition 3 (Aggregation of Private Information) In a small double auction,
the equilibrium price is privately revealing if, and only if, the model has uniform correlations,

i.e., �i;j = �� for all i 6= j.

Proposition 3 extends to large auctions as long as lim!1 �� () < 1. Our result is

consistent with that of Vives (2009), who examined (small and large) markets with uniform

correlations, and proved the positive part of our result.13 Even if learning through market

does not su¢ ce for traders to learn their values, with uniform correlations, they learn all

that is available.

Let us emphasize that the lack of full private revelation of information in Proposition

3 does not result from a presence of noise traders (e.g., Kyle (1989)), or uncertainty about

aggregate endowment, or uncertainty which has dimension greater than that of price (e.g.

Jordan (1983)). In particular, in any equicommonal auction, for any agent, there exists

a statistic that is su¢ cient for the payo¤-relevant information contained in the signals of

other agents. The su¢ cient statistic is given by a properly weighted average signal, where

the weights depend on correlations C and may di¤er across traders. Thus, the dimension of
the su¢ cient statistic, which is equal to one, exactly matches the dimension of the learning

instrument (price). However, in an equicommonal auction, price deterministically reveals

the (equally weighted) average signal �s, which is a su¢ cient statistic for all agents only in

models with uniform correlations.

4.2 Price Informativeness

Consider a market with I traders and suppose that a new trader enters. Would each of

the I traders be able to better estimate his value �i in the larger market? The signal

of a new trader brings additional information to the system and, whenever values are

correlated, the new information is payo¤-relevant for other market participants and valuable

in inference. We examine under what conditions the increased pool of available information

translates into a more informative market price. As we demonstrate, the informativeness

of equilibrium price need not be monotone in the number of traders in relevant economic

settings. For instance, in the spatial Circle City model, a new trader improves inference

from prices when the city is small but not when it is large. In the Twin Cities model with

� ' �1, price informativeness decreases with every additional trader and, hence, learning
from prices can be most e¤ective in the smallest market.

13Vives (2009) studied a model with one-sided market power. In Section 6, we show that results from
this paper extend beyond double auctions to markets with one-sided market power.
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(The Lack of) Monotonicity in Price Informativeness. We provide general con-

ditions that allow assessment of the marginal impact of a new trader on the informativeness

of equilibrium price. To measure price informativeness, we look at how much inference

through market� that is, conditioning on the equilibrium price p�, as well as one�s own

signal si� reduces the variance of the posterior of �i conditional only on the signal,

 + � V ar(�ijsi)� V ar(�ijsi; p�)
V ar(�ijsi)

: (18)

For all values of primitives,  + 2 [0; 1]. No reduction in variance ( + = 0) occurs when

price contains no payo¤-relevant information beyond a private signal, whereas full reduction

( + = 1) is accomplished when price, jointly with signal si, precisely reveals the value of �i
to trader i. In short, index  + quanti�es the contribution of a market to inference about a

trader value �i. In equicommonal auctions, the value of index  
+ is not trader-dependent.

For any sequence of equicommonal auctions
�
AI
	1
I=1
, de�ne ���() as the change in

commonality that results from adding a trader to an auction of size . ���() captures

the impact of a trader on the average comovement of values of all traders in the market.

Proposition 4 pins down the necessary and su¢ cient conditions for equicommonal auctions

that guarantee that a new trader increases the informational content of price. All primitives

of the auction but the correlation matrix are assumed to remain the same when the market

is enlarged.

Proposition 4 ( Informational Impact) There exist thresholds �+;�� < 0 and �
�
;�� > 0

such that the marginal contribution of an additional trader to price informativeness is

strictly positive if, and only if,

���() > �+;�� for ��() > 0; (19)

���() < ��;�� for ��() < 0:

The two thresholds are characterized in the Appendix. Proposition 4 has a compelling

economic interpretation: Whether a new trader increases price informativeness depends

precisely on the change in the comovement of values that his participation induces in the

market. The marginal impact of a trader is positive, provided that his participation does not

reduce the (absolute) average comovement of values too much. Further, the informational

content of price is a¤ected by how the details of correlations C change as the market grows
only to the extent that a new trader alters the average correlation of values.

Proposition 4 can be intuitively explained by constructing a map of price-informativeness

curves inscribed in Figure 1 (see Figure 2). For each value  + 2 [0; 1], let a  +-curve consist
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of all pro�les (; ��) that give rise to price informativeness equal to  +. When price is per-

fectly uninformative ( + = 0) for any market size , as it is, for instance, in auctions with

independent private values (�� = 0), the 0-curve coincides with the horizontal axis. When

price is informative, for any  + 2 (0; 1), a  +-curve consists of a positive and a negative
segment, located in the positive and negative quadrants of ��, respectively. This re�ects

that traders can learn from prices in environments with positive and negative dependence

among values. For the slope of  +-curves, one can show that, ceteris paribus, higher price

informativeness  + can be achieved by increasing the size of a market  (and the pool of

signals) with a given commonality, or by increasing the absolute value of commonality ��

for a given number of traders. Therefore, the positive (negative) components of  +-curve

slope down (up),  +-curves located further away from the horizontal axis correspond to

greater price informativeness, and the curve for the maximal price informativeness  + = 1

comprises one point (1; 1).

Take an arbitrary sequence of auctions represented by a commonality function �� ().

For any auction (; ��) in the sequence, the conditions from Proposition 4 can be seen as

the commonality function crossing the  +-curve at point (; ��) from below if �� > 0 or from

above if �� < 0. The thresholds �+;�� and �
�
;�� measure the change in commonality that is

just su¢ cient to maintain the price informativeness constant.

A general lesson from Proposition 4 is that the informativeness of equilibrium price in

double auctions may exhibit essentially arbitrary non-monotone behavior. Moreover, while

arbitrary, the e¤ectiveness of learning through market can be uniquely pinned down by

tracing how changes in details of correlations between trader values translate into changes

of commonality.

As a more speci�c implication of Proposition 4, suppose one wishes to determine the

market size that maximizes price informativeness in an equicommonal auction. In any

model in which the absolute value of commonality �� () is non-decreasing in market size, the

larger the market, the more traders can learn about their values. This is, for instance, the

case in the Uniform Correlations model. As Proposition 4 indicates, learning can improve

with market size even if values become less aligned, when the reduced comovement in values

is su¢ ciently compensated by new payo¤-relevant information brought by an additional

trader. In the Circle City model, where correlation weakens with distance, new traders

enhance learning when the city is small, but when the city size exceeds a certain threshold,

price becomes less and less informative as the city grows further. The informativeness

of price attains the maximum for an intermediate city size. In the model of Twin Cities

with � 2 (�1=3; 1), commonality is positive and increasing and so is price informativeness.
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When trader values are moderately distinct between the two cities (� 2 (�1;�1=3)), price
informativeness is U-shaped in market size , and learning is most e¤ective for the extreme

market sizes. The Twin Cities with � ' �1 is an example of a model in which equilibrium
price is most informative in the smallest market. Notably, in this model, �s equals the

average noise �" and equilibrium price is independent from each trader�s value �i. Still,

cp 6= 0 and bidders learn from prices in all but large auctions� what is there to learn from?
In Section 5, we investigate the mechanisms underlying inference from prices, which allow

us to explain these behaviors of price informativeness.

Price Inference in Large Markets. Our next result asserts that inference in the limit

large equicommonal auctions may feature three qualitatively di¤erent outcomes: traders

may learn perfectly their value, learn it partially, or learn nothing at all.

Corollary 1 (Price Informativeness in Large Markets) In the limit large auc-
tions, for any i, the equilibrium price:

(1) is perfectly uninformative about �i if, and only if, lim!1 �� () = 0;

(2) reveals some information about �i if, and only if, lim!1 �� () 2 (0; 1]; and
(3) deterministically reveals �i if, and only if, lim!1 �� () = 1:

Whenever commonality converges to zero in large markets, agents learn nothing about

their values through market prices. This occurs, for example, in the Twin City model

with � ' �1 and also in the Circle City model. Given that new traders always add

to the pool of payo¤-relevant information, why does the price become uninformative in

the large Circle City? Note that, for any decay rate � 2 (0; 1), the value of any trader
in the city is strongly correlated only with a group of close neighbors, and is essentially

independent from the values of distant traders. Similarly, a strong correlation of values

in a neighborhood becomes negligible in a large city. With respect to how much traders

can learn from prices about their values (but not in regard to informational e¢ ciency, see

Section 4.1), a large city operates e¤ectively like an environment with independent private

values, despite there being (possibly signi�cant) payo¤-relevant information available in the

economic environment. (See also Section 5.)

4.3 Informational Gap

Proposition 3 shows that, typically, markets do not aggregate all the payo¤-relevant infor-

mation. So far, we have examined how much traders can learn about their values from

the information that prices convey, relative to what they learn from private signals. The

analysis suggests that, often, prices contribute little over private signals, and that learning
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from prices need not advance with market size. To assess the extent of ine¢ ciency of learn-

ing through markets, we ask: Given the information potentially available in the market

(s), how much can one improve upon markets by exploiting other, non-market modes of

learning, such as direct communication?

To quantify the discrepancy in informativeness between the market and the benchmark

in which the information in signals s is revealed, we look at how much a trader observing all

signals (s) would reduce the variance of the posterior conditional on the variables accessible

to the trader through the market (si; p�),

 �i �
V ar(�ijsi; p�)� V ar(�ijs)

V ar(�ijsi)
: (20)

Statistic  �i 2 [0; 1] measures the informational gap with respect to the e¢ ciency bench-
mark. Indices  +, de�ned in (18), and  �i measure the contribution of the market to

learning, and the potential to learn outside the market, respectively;  �i +  +i � 1. By

Proposition 3, markets are informationally e¢ cient ( �i = 0) if, and only if, the model has

uniform correlations. When  �i > 0, some of the information available in the market is

lost in price, and learning directly from signals of other traders would provide trader i with

valuable information.

We now contrast the extent of informational ine¢ ciency in the models from Section 2

(see Figure 3). In the Uniform Correlations model, there is no e¢ ciency loss. In the Circle

City and Twin Cities models, learning from market versus non-market opportunities to

learn becomes less and less e¤ective as the market grows. The limit (� ' �1) Twin Cities
model provides a dramatic example. Here, if agents knew all signals in the large market,

they would be able to discover their values; yet, price loses all the information contained

in s.

Notably, as our examples illustrate, in economic environments with heterogeneously

correlated values, the informational e¢ ciency may decrease with the number of traders�

small markets might be more e¢ cient in transmitting payo¤-relevant information than large

competitive markets, and informational e¢ ciency and the potential to learn outside of the

market may change in a non-monotone, and arbitrary, fashion as market size changes. In

light of our previous results, a more general insight is that price informativeness and in-

formational gap are governed by distinct mechanisms. While how much traders can learn

from the market ( +) depends on the average comovement of values �� () alone, how far o¤

markets are from e¢ ciency ( �i ) is determined by the heterogeneity in comovement of val-

ues. Thus, markets that share the same commonality schedule �� () may nonetheless di¤er
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in how e¢ ciently they aggregate the information available in the signals, s.14 Furthermore,

with equicommonal C, unlike price informativeness ( +), ine¢ ciency  �i may di¤er among
traders.

In the three aforementioned examples, the informational gap is not idiosyncratic, for

traders face an identical residual market. Clearly, the residual market is often trader-

speci�c. To �x ideas, consider a market in which a small number of producers whose

cost parameters are strongly correlated trade with a large number of consumers whose

preferences commove weakly. Such interdependence can be captured by the Asymmetric

Correlations model in which citizens of city A are interpreted as producers (see Section 6).

Although commonality and price informativeness are the same for all producers (i 2 A) and
consumers (i 2 B), the informational gap is not. Speci�cally, producers have more incentive
to learn outside the market to improve the precision of their estimates than consumers

(see Figure 3C). It is easiest to see why in large markets. The within-group correlation

determines the potential to learn outside of market: in a large market, members of city A

(where �i;j = 1), but not B, would be able to perfectly estimate their value �i having access

to the signals of other citizens in their city. In this sense, the within-group correlation is

more important for the informational gap than the size of the group in the Asymmetric

Correlations model.

5 Informational Trade-o¤s

The absence of monotonicity of price informativeness in general suggests that small markets

may potentially aggregate information that is lost in large markets, and that there is a trade-

o¤ in information aggregation between small and large markets. What can traders learn in

small markets that they cannot learn in large markets? This section uncovers the trade-o¤

in price informativeness by separating the components of the available information being

transmitted through prices in small and large auctions. As a starting point, observe that

the equilibrium price in a large auction reveals the average value. In a sequence of auctions�
AI
	1
I=1
, let A1 be the limit auction with the vector of values f�ig1i=1. De�ne

��
1 � lim

I!1

1

I

X
i2I

�i: (21)

14For example, the e¢ ciency gap is zero in auctions in which the correlation matrix C evolves with the
number of bidders such that the commonality schedule coincides with ��CC () from the Circle City model
or ��TC () from the Twin Cities model and, for any given market size , all pairwise correlations �i;j , i 6= j,
are the same across bidder pairs.

20



In the large auction, price reveals no other information contained in the signals other than
��
1; ��1 � N (E (�) ; �2���

1), where ��1 � lim!1 �� (). To provide economic interpretation

for ��1 and to understand better what it captures for an individual trader, we argue that

there is a sense in which the average value in a large auction, ��1, represents a common value

component in a large double auction (Section 5.1). We then show that if one de�nes the

notion of a common value component of an auction appropriately, the bits of information

that come to be revealed in small and large auctions can be identi�ed (Section 5.2).

5.1 Common Value Component of an Auction

Putting our model and analysis aside for a moment, suppose that one would like to de�ne

a notion of a common value component for a pro�le of traders�values f�ig1i=1 in a large
auction� a random variable that captures the comovement in values of all traders in a large

market. The following de�nition seems appropriate.

De�nition 2 A common value component is a random variable X such that for each trader

i, �i can be decomposed into X and Ri � �i � X, with (i) X?Ri, and (ii) Ri?Rj for all
i 6= j.

The second condition assures that X is a maximal common value component in that

the residuals cannot be decomposed in a non-trivial way. De�nition 2 captures value

comovement in auctions with pure common values or, more generally, in the Uniform

Correlations model. Unfortunately, a thus-de�ned common value component fails to exist

in any auction outside this class. The problem arises because condition (ii) does not admit

any heterogeneity in correlations of values across pairs of traders.15

Lemma 2 ( Identification 1) A common value component from De�nition 2 exists if,

and only if, the correlation matrix C in the large auction A1 has uniform correlations, i.e.,
�i;j = ��

1 for all i 6= j. Moreover, X = ��
1, where the common value component is unique

up to a constant.

To have a notion of a common value component that accommodates heterogeneous

interdependencies in values, we relax the second condition and require that, for each trader

15Consider the Uniform Correlations model and suppose that correlation of valuations increases for a
pair of traders. The common value component remains the same, as it is de�ned for a large market and
the increased correlation for one pair of agents is inconsequential. Nevertheless, since the residuals in the
pair are not independent, the two traders can learn from each other�s residuals in addition to what they
can learn from the common value component.
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i, the residual Ri be on average independent from the average aggregate residual,

R = lim
I!1

1

I

X
i2I

Ri: (22)

De�nition 3 A common value component is a random variable X such that for each

trader i, �i can be decomposed into X and Ri � �i � X, such that (i) X?Ri, and (ii)
Ri?R.

The weaker independence condition (ii) in De�nition 3 preserves the maximality of the

common value component. The punch of De�nitions 2 and 3 is the same for markets with

uniform correlations; with the latter de�nition, however, a common value component exists

and is identi�ed up to a constant in all equicommonal auctions.

Lemma 3 ( Identification 2) A common value component from De�nition 3 exists

if, and only if, the correlation matrix C in the large auction A1 is equicommonal, i.e.,

lim I!11
1
I

P
j2I;;j 6=i �i;j = ��1 for all i 6= j. Moreover, X = ��

1, where the common value

component is unique up to a constant.

The notion of a common value component is useful, not only in identifying the trade-o¤

but also in understanding what kind of market shocks can be accommodated by various

correlation matrices C. By Lemma 2, it is as if, in the microfoundation underlying the
joint distribution of values f�ig1i=1 that induces C, there were only two types of shocks:
some shocks a¤ect all agents in the same way (aggregate shocks), and any other shocks in

the data-generating process for f�ig1i=1 must be idiosyncratic. Again, while such a shock
structure �ts many markets relevant for asset pricing or macroeconomics, it precludes other

forms of interdependencies in values through local shocks. In light of Proposition 4, in

markets that are a¤ected only by aggregate and idiosyncratic shocks, there is no trade-o¤

in inference between small and large markets, and larger markets o¤er superior learning

opportunities.

By Lemma 3, equicommonal auctions extend the class of markets beyond those cap-

tured by the Uniform Correlations model, as follows. By permitting non-zero correlation

in residuals, equicommonal auctions do not restrict shocks underlying the residuals to be-

ing idiosyncratic, which admits rich forms of local comovement in values. Additionally,

unlike De�nition 2, De�nition 3 de�nes a common value component regardless of whether

a particular stochastic process that generates values f�ig1i=1 involves a shock that a¤ects
all agents in the same way.16 Hereafter, the common value component is understood as in

De�nition 3.
16Consider the Twin Cities model with � = 0, XA � N (0; 1) and XB � N (0; 1). Although no shock

a¤ects all agents, and the values are independent for any pair of traders from the two groups, the common
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The common value component X represents the comovement of all values in large

auctions. From a trader�s perspective, its informational content about �i might vary from

almost full revelation (which obtains only with pure common values for almost all traders)

to nothing (in which case the component is deterministic). Among the examples from

Section 2, X is deterministic in the models of Circle City and Twin Cities with � ' �1, as
well as the IPV model. The common value component is non-degenerate in the Uniform

Correlations model with �� > 0, the Twin Cities model with � > �1, and the Asymmetric
Correlations model.

Correlation in residuals represents the comovements among values present in groups of

bidders but not the market as a whole. The contribution of the local comovements picked

up by residuals to commonality �� () is measured by the average correlation in residuals

��R � (1= (I � 1))
P

j 6=i (cov (Ri; Rj) =�
2
�). For a given market size , the residuals are pos-

itively correlated if, and only if, local comovements increase commonality of values over

the comovement of X with p�, ��R () = �� () � ��1. The residuals are positively corre-
lated in the Circle City model, negatively correlated in the Twin Cities and Asymmetric

Correlations models and uncorrelated in the Uniform Correlations model. While in all the

considered examples, the absolute value of correlation in residuals monotonically decreases

in market size and correlation does not change the sign as the market grows, these need

not hold in general.

5.2 Small versus Large Auctions

To investigate the sources of learning in small and large auctions, we put more structure

on how correlation matrices change in a sequence of auctions. We assume that an auction

AI+1 results from adding a bidder to an auction AI , and the correlations among bidders

from the auction AI are preserved in AI+1. Precisely, a random vector f�igIi=1 in auction
AI is a truncation of an in�nite vector f�ig1i=1 in the large auction. The common value
component from the large auction X = ��

1 can then be interpreted as the common value

component for a subset of bidders, as well.

In light of Lemma 3, in any equicommonal auction, a signal of trader i can be written

as a sum of three independent random components

si = X +Ri| {z }
�i

+ "i: (23)

value component from De�nition 3 (but not De�nition 2) exists and is given by X � N (0; 12 ). The residuals
Ri � N (0; 12 ) are perfectly negatively correlated for any pair of traders from di¤erent cities and Ri?R in
the large auction.
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To investigate the nature of price inference in small and large equicommonal auctions, we

characterize how the updating of expectation of �i via price by a bidder i can be explained

in terms of comovements of p� with each y = X, Ri, "i. Taking conditional expectation of

(23), we have that

si = E (Xjp�; si) + E (Rijp�; si) + E ("ijp�; si) ; (24)

for any price p� and signal si. Thus, a Bayesian bidder i who makes inference about his

value �i based on si and p� can be interpreted as decomposing the signal he received, si,

into conditional expectations of each X, Ri, and "i. The conditional expectation of value

�i then corresponds to E (�ijp�; si) = E (Xjp�; si) +E (Rijp�; si). Given this interpretation
of inference in the model, price is informative if its realizations a¤ect the decomposition

(24) of si.

The stochastic relation between the equilibrium price and the three components of si
in the model can be described by the projection

p� = �XX + �RRi + �""i + �; (25)

where � is a random variable that is independent fromX, Ri, and "i. SinceX, Ri, and "i are

mutually independent, the coe¢ cients in regression (25), which measure the comovement

of y with price, are given by �y = cov(y; p)=V ar(y). In the Appendix (Lemma 6), we show

that �y � 0 for y = X;Ri and "i, even if �� < 0.17

Heuristically, the equilibrium price may change the decomposition of si in (24) through

two countervailing e¤ects. With �X ; �R > 0, a high realization of price indicates high real-

izations ofX and Ri, respectively, and the agent revises the expectation E (X +Rijp�; si) =
E (�ijp�; si) upwards; since �" > 0, a high realization of price indicates a high realization

of "i and, given the relationship (24) and that si is �xed, the agent revises the expectation

of �i downwards. Thus, the overall e¤ect on the expectation E (�ijp�; si) depends on the
relative strength of the two e¤ects, in turn determined by �X ; �R, and �". More formally,

price a¤ects the expectation E (yjsi; p�) if coe¢ cient cp;y in

E (yjsi; p�) = E (y) + cp;y (p� E (p�)) + cs;y (si � E (si)) (26)

17In fact, price is strictly positively correlated with "i in small auctions. This is because price is a linear
and increasing function of the average signal, �s = 1

I (X +Ri + "i) +
1
I

P
j 6=i sj , which is increasing in each

of the three components. In addition, if the common value component is non-degenerate, it can be shown
that �X > �" > 0 using that X is positively correlated with sj . The magnitude of �R varies in the
(residual) commonality ��R and �R 2 [0; �X ], where zero is attained for ��R = �(1� ) and �X is attained
for ��R = 1.
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is not zero. Lemma 4 characterizes the inference coe¢ cient cp;y in terms of coe¢ cients �y.

Lemma 4 In the linear conditional expectation E (yjsi; p�), the price coe¢ cient is

cp;y = c
X
y0 6=y

�
�y � �y0

�
�2y�

2
y0 ; (27)

where c is a positive constant that is the same for all y and �2y is the variance of the

component y.

By (24), cp = cp;X + cp;R = �cp;". As is evident from (25), when �X = �R = �",

equilibrium price is a noisy (linear) transformation of si, and hence it does not contain any

information about y beyond si. The necessary condition for the price to be informative

about �i (cp 6= 0) is that either �X 6= �" or �R 6= �"; that is, that the two countervailing

e¤ects described earlier do not perfectly o¤set each other. When �X > �", a bidder tends

to attribute a higher price to a higher realization of X rather than to a higher "i. Therefore,

the conditional expectation of X is increasing in price given si. By an analogous argument,

so is the conditional expectation of Ri if �R > �". Having recast Bayesian updating in terms

of �X ; �R, and �", we next identify the sources of learning in the models from Section 2 and,

more generally, discuss how the results about price informativeness and its monotonicity

from Section 4 can be explained in terms of the comovements captured by �y.

Large Auctions: In large auctions, �R; �" ! 0 as the covariances of Ri and "i with

price vanish, and Bayesian updating derives solely from the comovement of price with X.

It follows from (27) that price is informative (cp = cp;X > 0) in large auctions only if the

common value component is non-degenerate (�2X 6= 0), as it is in the models of Uniform

Correlations, Twin Cities with � > �1 and Asymmetric Correlations. The nature of

learning in small markets is distinct from that in large markets. We next consider a class

of auctions with a deterministic X, where traders do not learn from prices in large markets

and the distinction is transparent.

Small Auctions with a Deterministic X: Price can be informative in small auctions

even if traders learn nothing about their values �i from prices in large auctions. When X

is deterministic, and hence Ri = �i, price inference can take one of two forms: (net)

learning through residuals (�R > �"), as in the Circle City model; or learning through

noise (�R < �"), as in the Twin City model with � ' �1 (cf. (27)). With a positive
commonality �� = ��R, the comovement of price with Ri exceeds the comovement of price

with noise "i. Learning through residuals occurs if, and only if, ��R > 0; then, cp;R > 0.

Similarly, learning through noise occurs if, and only if, ��R < 0; then, cp;R < 0 (see Lemma
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6 in the Appendix). Interestingly, the Twin Cities model with � ' �1 is an example in
which price is independent from residuals (�R = 0), and hence from each bidder�s value

�i, and there is no countervailing e¤ect in learning; traders learn exclusively through noise.

In the IPV model, note that both residuals and noise are correlated with price in small

markets (�R = �" > 0); however, unlike in the models of Circle City and Twin Cities, the

comovements perfectly balance, and price is uninformative.

Small Auctions with a Stochastic X: In auctions where X is not degenerate, learn-

ing about �i through residuals is reinforced and learning through noise is counterbalanced

by learning through the common value component. In the Twin Cities model with � > �1,
�R = 0 and depending on �X , �", �

2
X and �

2
", traders learn either through noise or through

the common value component. In the Uniform Correlations model (and only there), the

residuals are mutually independent (Lemma 2); therefore, �R = �" and traders learn only

through the common value component, as �X > �".

Monotonicity of Price Informativeness: Explaining price informativeness in terms

of the comovements captured by �X ; �R, and �" also sheds light on the monotonicity of price

informativeness in di¤erent markets.18 Whether and why  + is monotone in  depends on

which of the components of si dominates inference in (27). If traders learn only through

residuals or noise, then �R; �" ! 0 in large markets and price informativeness eventually

decreases in market size. This occurs, for example, in the Circle City model (learning

through residuals) or in the Twin Cities with � ' �1 (learning through noise). If the
comovement of X with price is the principal source of information and �" = �R, then

price is more and more revealing as the market grows (as, for example, in the Uniform

Correlations model). The U-shaped price informativeness  + in the Twin Cities model

with � > �1 can be understood in terms of the two countervailing e¤ects that derive from
�X > �" > �R = 0. If the variance of X is su¢ ciently small (� 2 (�1;�1=3)), then the
comovement of X with price is too small to outweigh the e¤ect of learning though noise in

small markets. As the market grows and �" decreases, the di¤erence j�R��"jmonotonically
decreases, as well, and  + diminishes. In addition, for any � 2 (�1;�1=3) there exists
 for which the two e¤ects perfectly o¤set and price informativeness attains its minimum

equal to zero. For all market sizes beyond this threshold, traders infer through common

value component, and because �X � �" is monotonically increasing, so is  +. In the model
of Twin Cities with � 2 (�1=3; 1), learning through common value component dominates
for all , and  + increases in  for any market size.

Summary: To recap, the sole source of price inference in large auctions is the common value

18Price informativeness  + depends not only on cp but also on variances. Here, we focus on how market
size a¤ects cp� the driving force behind the behavior of  

+ as a function of  in the considered examples.
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component. Transmitting �local�information contained in residuals or noise represents the

advantage of small auctions over large auctions. The loss of information in large auctions

occurs whenever a correlation matrix C features heterogeneity. The loss is especially stark in
economic environments where (1) the common value component is deterministic, and (2) the

residuals are positively or negatively correlated, and thus correlation among residuals is the

exclusive source of inference about �i. Market size a¤ects the comovements of price with the

common value component, residuals and noise in market size in a di¤erent fashion. Changes

in commovements determine how price informativeness varies with additional bidders, and

might give rise to the non-monotonicity of price informativeness studied in Section 4.2.

6 Other Market Structures

Double auctions are commonly considered a proper setting for thinking about price for-

mation; they often accurately describe actual markets; buyers as well as sellers are fully

rational, Bayesian and strategic. We now extend the results established in the previous

sections to a larger class of market structures in equicommonal, uniform-price settings. To

make ours directly comparable with standard models of oligopolistic industry, we augment

the model by introducing producers. Each producer j is characterized by a quadratic cost

function

Ci(yi) = �i � yi +
�

2
y2i : (28)

To preserve the symmetry of the model, we retain the assumption that � be the same for all

traders, utility maximizers and producers. While we continue to assume that correlation

matrix C is equicommonal, we relax the assumption E (�i) = E (�j) for all i; j 2 I. In all of
the models considered, traders submit bidding schedules that are aggregated to determine

the price by market clearing. By convention, submitted bids are (net) demands qi (p) and,

thus, the equilibrium supply of producer i is y�i = �qi (p�) and his equilibrium pro�t is

p�y�i � Ci(y
�
i ).

The class of models for which our results extend straightforwardly includes the following:

� A double (Walrasian) auction with I traders, who are either strategic (price-taking) utility
maximizers or strategic (price-taking) producers who submit net demand schedules. The

solution concept is symmetric linear Bayesian Nash (competitive rational expectations)

equilibrium.

� A model of a share auction in which an auctioneer sells Q units of a divisible good to

I strategic (competitive) utility maximizers who submit demand schedules (e.g., Wilson

(1979)) or an auctioneer buys Q units of a divisible good from I strategic (competitive)
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producers who submit supply schedules. The solution concept is symmetric linear Bayesian

Nash (competitive rational expectations) equilibrium.

� A model of oligopolistic industry with I strategic (price-taking) producers, who submit

supply schedules, and face a deterministic linear demand. The solution concept is linear

Bayesian Nash (competitive rational expectations) equilibrium.

We call this class of models� and the double auction� uniform-price models. In Lemma

5 and Corollary 2, �equilibrium�refers to symmetric linear Bayesian Nash equilibrium or

competitive rational expectations equilibrium, as appropriate for a given model.

Lemma 5 (Uniform-Price Model) Let C and C 0 be two equicommonal correlation ma-
trices with commonality �� in a uniform-price model. Then, other primitives being the same,

a pro�le fqi (�)gi2I is an equilibrium in a model with C if, and only if, it is an equilibrium
in a model with C 0.

The argument behind Lemma 5 is analogous to that in Lemma 1. One implication of

Lemma 5 is that the results on existence of equilibrium established in models with uniform

correlations carry over to all other equicommonal models with the same commonality.19 In

general, in the equicommonal, uniform-price models equilibrium exists if, and only if, �� is

bounded by some ~�+ (; �2) and ~�� () where the lower bound ~�� () is as in (9) while the

upper bound is model-speci�c and is weakly larger than (8).

We extend the results from Section 4 to the class of uniform-price models.

Corollary 2 ( Information Aggregation in Uniform-Price Models) Consider a
symmetric uniform-price model in which equilibrium exists. Propositions 3 and 4, Corollary

1, and Lemmas 2 and 3 hold.

The intuition behind this result is the following. In the considered class of uniform-

price models, the equilibrium bids are linear and symmetric. The equilibrium price then

is a deterministic function of the average signal �s, regardless of what the model-speci�c

bids are like. Therefore, in all of the considered models, equilibrium price contains the

same information. Our results from Section 4 about price informativeness hold not only

qualitatively but also quantitatively in all uniform-price models. Thus, while various uni-

form price models may induce di¤erent equilibrium strategies or allocations, they share

the properties of price informativeness that one can establish without relying on the exact

functional form (or there being a closed-form solution) for the bidding strategy.

19For example, Vives (2009) provided conditions under which a linear Bayesian Nash equilibrium exists
in a model of oligopolistic industry with uniform correlations, �� � 0.
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7 Conclusions

This paper investigated price inference in markets in which the values that traders derive

from the exchanged good are heterogeneously correlated. Compared to markets in which

trader values commove solely through aggregate shocks, the information aggregation prop-

erties, including monotonicity of price informativeness and informational e¢ ciency, di¤er

qualitatively when interdependencies among trader values are heterogeneous.

Some modeling assumptions, namely the quadratic functional form for the payo¤s and

the a¢ ne information structure, were adopted for reasons of tractability. Our analysis

should provide a useful benchmark for more general environments with a unique equilib-

rium. The main limitation of our analysis, resulting from the assumption of equicommon-

ality, is that price is equally informative for all trades. Allowing some agents to learn more

from prices than others is a promising, but also challenging, direction for future research.
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Appendix

The proofs of Lemma 1 and Proposition 1 are provided after the proof of Proposition 2.

Proof 1 Proposition 2 (Equilibrium Bids) In the symmetric linear equilibrium, bids

have the functional form qi (p) = �0 + �ssi + �pp, where constants �0, �s; and �p are the

same across all traders. Given bids of traders j 6= i, trader i faces a residual supply with

a slope � and a stochastic intercept which is a function of signals of other traders. The

best response of trader i to the residual supply is given by the �rst-order (necessary and

su¢ cient) condition: for any p,

E (�njsi; p)� �qi = p+ �qi: (29)

By condition (29) and market clearing, equilibrium price is equal to p� = 1
I

P
i2I E (�ijsi; p�).

Given an a¢ ne information structure, the conditional expectation is linear, E (�ijsi; p) =
c�E (�i) + cssi + cpp, where coe¢ cients c�; cs and cp are identical across traders and, by

E (�i) = E (si) = E (p�), the coe¢ cients also satisfy c� = 1 � cs � cp. It follows that the

equilibrium price is given by

p� =
c�E (�i)

1� cp
+

cs
1� cp

�s; (30)

where �s = 1
I

P
i2I si: Using (30), random vector (�i; si; p�) is jointly normally distributed,0B@ �i

si

p�

1CA = N

264
0B@ E (�i)

E (�i)

E (�i)

1CA ;

0B@ �2� �2� cov (�i; p
�)

�2� �2� + �2" cov (si; p
�)

cov (p�; �i) cov (p�; si) V ar (p�)

1CA
375 : (31)

The covariances in (31) are given by

cov (�i; p
�) =

1

I

cs
1� cp

(1 + (I � 1) ��)�2�; (32)

cov (si; p
�) =

1

I

cs
1� cp

�
(1 + (I � 1) ��) + �2

�
�2�; (33)

and

V ar (p�) =
1

I

�
cs

1� cp

�2 �
(1 + (I � 1) ��) + �2

�
�2�: (34)
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Applying the projection theorem and the method of undetermined coe¢ cients, one can �nd

the inference coe¢ cients cs and cp,

cs =
1� ��

1� ��+ �2
; (35)

cp =
(2� ) ��

1�  + ��

�2

1� ��+ �2
: (36)

Using (29), the equilibrium bid is

qi (p) =
1

(�+ �)
[c�E (�i) + cssi + (1� cp) p] : (37)

In equilibrium, the residual supply of trader i (i.e., a horizontal sum of bids of traders other

than i) has the slope � = (1� ) (@qi (p) =@p)
�1. Consequently, � = � (1� ) = ( � cp).

In terms of exogenous parameters, the equilibrium bids are

qi (p) =
( � cp) c�
(1� cp)�

E (�i) +
 � cp
1� cp

1

�
cssi +

 � cp
1� cp

1

�
p; (38)

where cs; cp are given by (35) and (36), and c� = 1� cs � cp:

Proof 2 Lemma 1 (Sufficient Statistic for Equilibrium) As is shown in the proof
of Proposition 2, equilibrium bids (38) depend on correlation matrix C only through �� and,
hence, equilibrium bids coincide in all auctions characterized by the same commonality ��.

Proof 3 Proposition 1 (Existence of Equilibrium) The proof proceeds by verifying
that the pro�le of bids (38), i 2 I, constructed in the proof of Proposition 2 constitutes an
equilibrium with downward-sloping bids. The model admits downward-sloping demands in

equilibrium if, and only if, � > 0 (or, equivalently, cp < 1) and � < 1 ( > cp). By the

former condition,

�� 6= � (1� ) : (39)

Combined with the fact that �� � � (1� ) for an arbitrary random vector f�igi2I , condition
(39) implies the desired lower bound on commonality �� > � (1� ). The upper bound is

derived from the condition  > cp, which by (36) is equivalent to

�� <
2 � 2(1� )�2 + (1� )

r
4�4 +

�
 2�
1�

�2
2

: (40)

For any commonality �� that satis�es the two bounds, it is straightforward to verify that bids

from Proposition 2 constitute a linear Bayesian Nash equilibrium.
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Proof 4 Proposition 3 (Aggregation of Private Information) (Only if) Assume
that price is privately revealing, that is F (�ijsi; p�) = F (�ijs) for every s and p� = p� (s), or

equivalently the �rst two moments of the conditional distributions coincide. Using that price

is a deterministic function of the average signal, we have that F (�ijsi; p�) = F (�ijsi; �s). By
the projection theorem,

E (�ijsi; �s) = c0 + c � s; (41)

where c = (cs1 ; cs2 ; :::; csI ) is a vector of constants in which all entries j 6= i are identical.

That the equality E (�ijsi;�s) = E (�ijs) holds for all s implies that the coe¢ cients multiplying
each si are the same in both conditional expectations. We now show that identical for all

j 6= i coe¢ cients csj in E (�ijs) imply that matrix C has uniform correlations. Let V
= �2�C + I�" be the variance-covariance matrix of signals fsigi2I , and x = fcov (�i; sj)gi
be the column vector of covariances. By the positive semide�niteness of C, V is positive
de�nite and, hence, invertible. Applying the projection theorem, coe¢ cients c 2 RI in

expectation E (�ijs) can be found from the condition c = xTV�1, which gives

x = Vc: (42)

For any j 6= i, the jth row of (42) is

cov (�i; �j) = csj
X
j2I

cov (�i; �j) +
�
csi � csj

�
cov (�i; �j) + �"cov (�i; �i) ; (43)

where we used that coe¢ cients csj are the same for all j 6= i. (43) gives

cov (�i; �j) =
I � 1

1�
�
csj � csi

�csj��+ csj
1�

�
csj � csi

��2�: (44)

cov (�i; �j) is the same across all pairs of agents; that is, the correlation matrix C has
uniform correlations.

(If) Assume that the correlation matrix C has uniform correlations. We derive the �rst

two moments of F (�ijs). Given the uniform correlations matrix C, the variance-covariance
matrix V can be written as

V =

0BBBB@
a b ::: b

b a ::: b
...
...
. . .

...

b b ::: a

1CCCCA ; (45)
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where a = �2� + �2" and b = ���
2
�. Its inverse is given by

V�1 =

0BBBB@
~a �~b ::: �~b
�~b ~a ::: �~b
...

...
. . .

...

�~b �~b ::: ~a

1CCCCA ;

where

~a =
�2� + �2" + (I � 2) ��2�

(�2� + �2")
2
+ (I � 2) (�2� + �2") ��

2
� � (I � 1) �2�4�

; (46)

and
~b =

��2�
(�2� + �2")

2
+ (I � 2) (�2� + �2") ��

2
� � (I � 1) �2�4�

: (47)

Assuming w.l.o.g. that i = 1, we can write xT = �2� (1; �; �; :::; �). From the projection

theorem, the coe¢ cients in expectation E (�ijs) are equal to c = xTV�1, which gives

csi =
�4� + �2"�

2
� + (I � 2) ��4� � (I � 1)�2�4�

(�2� + �2")
2
+ (I � 2) (�2� + �2") ��

2
� � (I � 1) �2�4�

; (48)

csj =
��2"�

2
�

(�2� + �2")
2
+ (I � 2) (�2� + �2") ��

2
� � (I � 1) �2�4�

: (49)

We now argue that inference through E(�ijsi; p� (s)), with coe¢ cients derived in (35) and
(36) results in the same weighting of all individual signals as coe¢ cients (48) and (49). To

see this, write the equilibrium price as a function of signals. The expectation becomes

E(�ijsi; p� (s)) = E(�i) +

�
cs +

cpcs
1� cp

1

I

�
[si � E(si)] +

cpcs
1� cp

1

I

X
j2I
(sj � E (sj)) ; (50)

and hence E(�ijsi; p� (s)) = E(�ijs) if, and only if,

csj =
cpcs
1� cp

1

I
; (51)

csi = cs +
cpcs
1� cp

1

I
: (52)

That conditions (51) and (52) hold can be veri�ed using (35), (36), (48), and (49). This

proves the equality of expectations E(�ijsi; p� (s)) and E(�ijs). Next, we demonstrate the
equality of variances in the conditional distributions F (�ijsi; p�) and F (�ijs). Let  s be
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de�ned by V ar(�ijs) = (1�  s)�2�. By the projection theorem,

 s = csi + (I � 1)�csj

=
�4� + �2"�

2
� + (I � 2) ��4� � (I � 1)�2�4� + (I � 1)�2�2"�2�

[�2" + (1 + (I � 1) ��)�2�] (�2� (1� ��) + �2")

=
(1� �)

(1� ��+ �2)

1 + �2 + (I � 2) �� (I � 1)�2 + (I � 1)�2�2
(1� �) (�2 + (1 + (I � 1) ��)) =

=
(1� �)

(1� ��+ �2)

�
1 +

��2 + (I � 1) � (1� �) + (I � 1)�2�2 � (1� �) (I � 1) �
(1� �) (�2 + (1 + (I � 1) ��))

�
=  p

where  p is de�ned by V ar(�ijsi;p�) = (1�  p)�2� and, hence, the posterior variances

coincide.

Proof 5 Proposition 4 ( Informational Impact) Applied twice, the projection theo-
rem gives V (�ijsi) and V (�ijsi; p�), from which price informativeness  + is derived,

 + =
�2��2

(1� ) (�2 + 1)2 � ��2 + �� (�2 + 1)
: (53)

For any  + and , condition (53) is quadratic in �� with roots equal

�� =
(�2 + 1)

2
�
�2 +  +

� � + �q +22 + 4 + (1� )
�
�2 +  +

��
: (54)

For any  + 2 [0; 1] and  2 [0; 1), (54) gives the values of �� that, jointly with , give

rise to price informativeness equal to  +. For  + > 0, equation (54) has a positive and

a negative root. In addition, positive (negative) root is decreasing (increasing) in  and

increasing (decreasing) in  +. Thresholds �+;�� and �
�
;�� are determined as the changes of

�� that preserve the same price informativeness with an additional bidder, the inclusion of

whom changes  by

� =
1

I (I � 1) =
(1� )2

2� 
: (55)

Using (54), the upper threshold is given by

�+;�� =
(�2 + 1)

2
�
�2 +  +

� [ +� (56)

+
q
 +2 ( +�)2 + 4 + (1�  ��)

�
�2 +  +

�
�
q
 +22 + 4 + (1� )

�
�2 +  +

�
]:

By the monotonicity of (54) in ; �+;�� < 0: The threshold �
�
;�� can be derived analogously.
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Proof 6 Corollary 1 (Price Informativeness in Large Markets) Using (53), in
large markets,

lim
!1

 + =
�2��2

�� (�2 + 1)� ��2 : (57)

Given that �2 > 0, lim!1 �� () = 0 if, and only if, lim!1  
+ = 0; lim!1 �� () = 1 if, and

only if, lim!1  
+ = 1; lim!1 �� () 2 (0; 1) if, and only if, lim!1  

+ 2 (0; 1).

Proof 7 Lemma 2 ( Identification 1) Let f�ig1i=1 be a normally distributed random
vector. (Only if) Assume that there exists a random variable X such that Ri = �i � X

for all i, and X and fRigi2I are pairwise independent. For any i 6= j, cov (�i; �j) =

cov (X;X) = V ar (X) is independent of i; j, and hence correlations among f�ig1i=1 are
uniform. (If) Consider a pro�le f�ig1i=1 such that cov (�i; �j) = �� for all i 6= j. To argue

existence of a common value component from De�nition 2, we show that X � ��
1 and

Ri � �i � X satisfy conditions (i) and (ii). For any vector f�igIi=1 of the �rst I < 1
elements of f�ig1i=1, cov(�j; �i) = ���2� for all i 6= j, and

cov(��; �i � ��) =
1

I

X
j2I

cov(�j; �i)�
1

I2

X
j2I

X
k2I

cov(�j; �k) =

=
1

I
�2� +

I � 1
I
��� 1

I2

X
j2I

�
�2� + (I � 1) ���2�

�
= 0:

Since ��1 = limI!1 ��, limI!1 cov(��; �i � ��) = cov(X;Ri) = 0. Since X = ��
1 is

normally distributed, X and Ri are independent. By the assumption of cov (�i; �j) = ���2�
for any i 6= j, and using that cov(�i; �j) = cov(X;X) + cov(Ri; Rj) with cov(X;X) = ���2�,

it follows that cov(Ri; Rj) = 0 and, hence, Ri and Rj are independent.

For the uniqueness of the decomposition, observe that for an arbitrary common value

component X,
��
1 � lim

I!1

1

I

X
i2I

�i = X +R: (58)

For any I <1,

V ar

 
1

I

X
i2I

Ri

!
=
1

I2

X
i2I

X
j2I

cov (Ri; Rj) =
1

I
V ar (Ri) �

1

I
�2�: (59)

It follows that V ar (R) = 0 as I !1; that is, R is deterministic.

Proof 8 Lemma 3 ( Identification 2) Let f�ig1i=1 be a normally distributed random
vector. (Only if) Assume that there exists a random variable X such that, for all i, �i =
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X +Ri, X is independent from Ri for all i, and Ri is independent from R. Then,

lim
I!1

1

I � 1
X

j2I; j 6=i

cov(�i; �j) = cov(�i; X + lim
I!1

1

I � 1
X

j2I;j 6=i

Rj) = (60)

= cov(X +Ri; X + lim
I!1

I

I � 1
1

I

X
j2I

Rj � lim
I!1

1

I � 1Ri) =

= cov(X +Ri; X +R� lim
I!1

1

I � 1Ri) =

= cov(X +Ri; X +R) = V ar (X) � ��1�2�: (61)

The average correlation ��1 is independent across traders, and the auction is equicommonal.

(If) Consider a large equicommonal auction. We show that X � ��1 and Ri � �i�X satisfy

conditions (i) and (ii) from De�nition 3. For any vector f�igIi=1 of the �rst I <1 elements

of f�ig1i=1,

cov(��; �i � ��) =
1

I

X
j2I

cov(�j; �i)�
1

I2

X
j2I

X
k2I

cov(�j; �k) =

=
1

I
�2� +

1

I

X
j2I;j 6=i

cov(�j; �i)�
1

I2

X
j2I

 
�2� +

X
k2I;k 6=j

cov(�j; �k)

!
=

=
1

I

X
j2I;j 6=i

cov(�j; �i)�
1

I2

X
j2I

 X
k2I;k 6=j

cov(�j; �k)

!
:

Taking the limit as I ! 1 and using that, limI!1
P

k2I;k 6=j cov(�j; �k) = ��
1�2� for all

k, we have that cov(X;Ri) = 0. Since X � ��
1 is normally distributed, X and Ri are

independent. In addition,

��1�2� = lim
I!1

1

I � 1
X

j2I;j 6=i

cov(�i; �j) = (62)

= cov(X +Ri; X +R) = V ar(X) + cov(Ri; R)

and V ar(X) = ��1�2� imply cov(Ri; R) = 0 and, hence, the normally distributed Ri; R

are independent. For the uniqueness of the decomposition, observe that for an arbitrary

common value component X,

��
1 � lim

I!1

1

I

X
i2I

�i = X +R: (63)
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For any I <1

V ar

 
1

I

X
i2I

Ri

!
= cov

 
1

I

X
i2I

Ri;
1

I

X
j2I

Rj

!
=
1

I

X
i2I

cov

 
Ri;

1

I

X
j2I

Rj

!
: (64)

Since cov
�
Ri; limI!1

1
I

P
j2I Rj

�
= 0, taking the limit as I ! 1 gives V ar (R) = 0. It

follows that R is deterministic.

Proof 9 Lemma 4 From the projection theorem, for any y, the vector of coe¢ cients in

the conditional expectation E (yjsi; p�) is the product

(csi;cp;y) = (cov (y; si) ; cov (y; p
�))V�1; (65)

where V is the variance-covariance matrix of vector (s; p�). The inverse of V is given by

V�1 = 1

det (V)

 
V ar (p�) �cov(si; p�)
�cov(si; p�) V ar (si)

!
: (66)

Using (23), we have that V ar (si) =
P

y �
2
y and cov (y; si) = �2y. By (25), cov(si; p

�) =P
y �y�

2
y and cov (y; p

�) = �y�
2
y. Using (65),

cp;y =
1

det (V)

"
�y�

2
y

X
y0

�2y0 � �2y
X
y0

�y0�
2
y0

#
=

=
1

det (V)
X
y0 6=y

�
�y � �y0

�
�2y�

2
y0 : (67)

Letting c = 1= det (V) and observing that c > 0 by the positive de�niteness of V, we
obtain (27).

Proof 10 Lemma 5 (Uniform-Price Model) Let fqi (�)gi2I be an equilibrium in a

uniform price model with a correlation matrix C. In the �rst-order condition that determines
qi (�) for each i, C enters only through expectation E (�njsi; p�). By the assumptions of
linearity and symmetry of the equilibrium strategies, the equilibrium bid can be written as

qi (p) = �0 + �ssi + �pp. (68)

Market clearing implies that the equilibrium price is a deterministic function of �s and,

hence, price is informationally equivalent to �s and E (�njsi; p�) = E (�njsi; �s). Mimicking
the argument for a double auction, E (�njsi; �s) is invariant to changes of C other than ��
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and is the same for all equicommonal correlation matrices with commonality ��. It follows

that qi (p) satis�es each trader�s �rst-order condition for C 0, as well.

Proof 11 Corollary 2 ( Information Aggregation in Uniform-Price Models)
In the class of uniform-price models, price is informationally equivalent to �s and the results

hold by arguments analogous to those in a double auction.

Lemma 6 If X is non-degenerate, �X > �" > 0; �R 2 (0; �") if ��R < 0, �R 2 (�"; �X ] if
��R > 0, and �R = �" if ��R = 0.

Proof 12 Lemma 6 For inequality �X > �" > 0, using that cov(X; �s) = �2X and

cov("i; �s) =
1
I
�2", we have that �X = @p�=@�s > 1

I
@p�=@�s = �" > 0. Since

cov(Ri; �s) =
1

I

"
V ar (Ri) +

X
j2I;j 6=i

cov(Ri; Rj)

#
; (69)

and

0 � V ar

 
1

I

X
i2I

Ri

!
=
1

I2

 X
k2I

V ar (Rk) +
X
k2I

X
j2I;j 6=i

cov(Rk; Rj)

!
(70)

=
1

I

 
V ar (Ri)� V ar (X) +

X
j2I;j 6=i

cov(Ri; Rj)� V ar (X)

!
�

� 1

I

 
V ar (Ri) +

X
j2I;j 6=i

cov(Ri; Rj)

!
;

it follows that cov(Ri; �s) � 0 and, hence, �R = @p�=@�s � cov(Ri; �s)=V ar (Ri) � 0. In

addition, (69) implies that �R < �" if, and only if,
P

j2I;j 6=i cov(Ri; Rj) < 0 (��R < 0).

Finally, if cov(Ri; Rj) = V ar(Ri) (i.e., residuals are perfectly correlated), then �R = �X .
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FIGURE 1: EXISTENCE AND COMMONALITY FUNCTION  
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