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Abstract

Consider a market in which there are n firms producing a homogeneous good. We

make t̄ observations of this market and each observation includes firms’ prices, out-

puts and profits. We provide a set of necessary and sufficient conditions for each

observation to be rationalized as a pure strategy Bertrand equilibrium with each

firm having the same cost function across the observations, but different market

demands across observations. Moreover, we show that when firms’ profits are un-

observable the Bertrand model can still be refuted.
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1 Introduction

A basic requirement of a scientific theory is that it produces propositions which can be

tested against empirical observations. In this paper we examine the testable implications

of the canonical Bertrand oligopoly model. The question we aim to answer is conceptu-

ally very simple: given a set of observations of oligopoly competition what restrictions

must the observations satisfy if they are to be explained as the firms playing a Bertrand

equilibrium in each observation. Despite its simplicity, the question is an important one.

Being able to define the Bertrand model in terms of prices, outputs and profits, permits

greater variety than when we state specific primitives (cost functions and market demand)

and analyze the implications. Furthermore, it means we can define the Bertrand model

in terms of what is observable, rather that stating primitives which cannot be directly

observed.

1.1 Related Literature

In economics, theories of individual choice are well developed, but the testable implica-

tions of these theories are less well developed.1 One area where this is not true is consumer

theory. The theory of consumer choice, derived from the maximization of a rational pref-

erence relation has well-known testable implications. If we observe a set of prices, wealth

levels and Walrasian demands which fail to satisfy the weak axiom of revealed preference

(WARP) then there does not exist a rational preference relation, the maximization of

which, would produce the observed demands. However, it is also known that if a set

of observations satisfy the weak axiom then this is not sufficient for the existence of a

rationalizing preference relation.2 Mas-Colell et al. (1995, p.35) present an example, by

John R. Hicks, of a three-good economy where individual Walrasian demands satisfy the

weak axiom but exhibit intransitive choice.

Afriat (1967) analyzed the problem of finding a rational preference relation when we

1A survey of the recent developments of the testable implications of economic models is provided by

Carvajal et al. (2004).
2Although observations which satisfy the weak axiom also satisfy the weak weak axiom (WWA) and

can be rationalized by a complete, but not necessarily transitive, preference relation (Jerison and Quah,

2008).
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make a finite set of observations of prices and consumption choices. A number of different

equivalent conditions can be stated which are sufficient for the existence of a rational

preference relation, and it was shown that the utility function could be constructed as a

piecewise-affine function. These conditions are equivalent to the strong axiom of revealed

preference (SARP) which is a strengthening of the weak axiom to rule out intransitive

choices. The discovery of the strong axiom as necessary and sufficient for the existence

of a rational preference relation was an important result, and it might be expected that

this would be repeated for other economic models.

The canonical general equilibrium model was thought to have no testable implications

because of the Debreu-Mantel-Sonnenschein (DMS) results. These stated that given any

continuous function, defined on a compact subset of the normalized price space, which is

homogeneous of degree zero and satisfies Walras law, we can define an economy, with at

least as many consumers as goods, for which the function is the aggregate excess demand

of the economy. The results suggested that other than the properties of continuity,

homogeneity of degree zero and Walras law the aggregate excess demand of an economy

was arbitrary. However, recent research has suggested that these negative conclusions

are not the full story. Balasko (2009, p.14) notes that if one examines the aggregate

excess demand for an economy on the full normalized price space, instead of a compact

subset, then the excess demand functions have well-defined properties, and are not in any

sense arbitrary. Specificically, the aggregate excess demands are of topological degree one

whereas an arbitrary function can have a degree equal to any integer.

A seminal paper by Brown and Matzkin (1996) examined whether the general equi-

librium model has any testable implications. Instead of looking for testable restrictions

on the aggregate excess demand functions they assumed we make a finite set of obser-

vations on the equilibrium manifold of a pure exchange economy. That is, the graph

of the Walrasian correspondence (mapping the endowment space into equilibrium price

vector). They constructed a set of polynomial inequalities, similar to the Afriat inequal-

ities, together with market clearing conditions, and showed that the model had testable

implications. Moreover, they exhibited simple examples of exchange economies which

could not be rationalized as Walrasian equilibria. In addition, they provided testable im-

plications for economies in which agents have homothetic preferences and for Robinson
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Crusoe economies. Carvajal (2004) looked for testable implications of general equilibrium

with random preferences. If we make a set of observations of endowments, and for each

set of endowments we observe a probability measure over the price distribution, then

the observations are said to be rationalizable if there exists a probability measure over

the set of possible preferences which induces the observed measure over prices via Wal-

rasian equilibrium. In this case, the model has testable implications and examples can

constructed, similar to the pure exchange economies presented by Brown and Matzkin,

which cannot be rationalized by a probability measure over preferences.

Bachmann (2006) studied the core of an exchange economy. It was assumed we make

a finite set of observations of initial endowments and final allocations. The observations

are rationalizable if there exists a set of rational preference relations, one for each agent,

such that the final allocation provides a least as high a utility as the initial endowment,

and no proper coalition, or the grand coalition, can improve upon the final allocations.

The core was found to be characterized by a set of polynomial inequalities, and these

inequalities could be violated which showed that the core is a falsifiable concept.

The first paper to examine the testable implications of game theoretical models was

Sprumont (2000). This paper analyzed normal form games with finite action spaces, and

looked at two different rationalization concepts: Nash and Pareto rationalization. It is as-

sumed we make observations of players making choices from subsets of their strategy sets.

Then the observations are said to be Nash rationalizable if there exist rational preference

relations over all possible outcomes such that the observed choices are Nash equilibria in

each observation. The observations are Pareto rationalizable if the outcomes are Pareto

optimal. The paper identified necessary and sufficient conditions for a set of observations

to be rationalized as a Nash equilibrium, and showed that Nash rationalizability implies

Pareto rationalizability (although the converse is not true).

Recently, Carvajal and Quah (2008)3 have extended the research agenda on the

testable implications of economic models by analyzing the Cournot oligopoly model. They

assumed that we make a finite set of observations of oligopoly competition, and each ob-

servation includes the market price, firms’ outputs and profits. They provided a set of

necessary and sufficient conditions for the observations to be rationalized as a Cournot

3Herein referred to as simply CQ.
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equilibrium. Generally speaking, a set of oligopoly observations is Cournot rationalizable

if there exist cost functions for each firm, which are unchanged across the observations,

and a set of market demands, such that the observed outcomes are a Cournot equilibrium.

1.2 Overview

As noted at the beginning, in this paper we aim to extend the testable implications

of oligopoly models by analyzing the Bertrand model. It is assumed that we make a

finite set of observations of oligopoly competition, and each observation includes firms’

prices (possible different), outputs and profits. We then identify the conditions which this

data set is to satisfy if each observation is to be rationalized as a Bertrand equilibrium.

We define Bertrand rationalizability in an analogous way to CQ: the observations are

Bertrand rationalizable if there exist cost functions for each firm, which are unchanged

across the observations, and market demands for each observation, such that the observed

prices, in each observation, are a Bertrand equilibrium.

The main result in this paper (Theorem 1) is a set of necessary and sufficient condi-

tions for a data set to be rationalized as a pure strategy Bertrand equilibrium. We also

demonstrate, by a simple example, that the Bertrand model can be refuted even when

firms’ costs can not be inferred from the data set. The rest of the paper is organized as

follows. The next section sets out the Bertrand model, defines Bertrand rationalizability

and presents the main results. In section 3 we present some example observations and

apply the results obtained. The example data sets demonstrate that the Bertrand model

is refutable: there exist data sets which cannot be rationalized as Bertrand equilibria. In

section 4 we discuss the results obtained and consider a possible extension of the work

presented here.

2 Rationalizability- The Bertrand Model

2.1 Bertrand Equilibrium

Before addressing the problem of rationalizing a set of observations, we define precisely

what is meant by a Bertrand equilibrium. The interested reader can find more detailed
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discussions of the Bertrand model in Tirole (1988) and Vives (1999). Consider a market

in which there are N = {1, ..., n}, n ≥ 2, firms which produce a homogeneous good. The

firms compete by simultaneously and independently setting prices. That is to say, each

firm chooses a Pi ∈ <+. The firms commit to supplying all the demand forthcoming at

any price. This means that there is no rationing of consumers, and output is demand-

determined. Each firm has a cost function Ci(Q) which is strictly increasing and satisfies

Ci(0) = 0. The last condition on the cost function rules out the existence of sunk costs,

so that no production is costless.4 The market demand is given by D(P ) and is strictly

decreasing in price when output is strictly positive. The profit accruing to the firms can

be summarized as follows. If any firm is undercut it receives zero demand and its profit

is zero. If a firm has the unique minimum price then it receives all the demand and its

profit is PiD(Pi) − Ci(D(Pi)). If a firm ties with other firms at the lowest price then a

sharing rule describes how the market output is shared. The conventional sharing rule is

the equal sharing rule where firms tieing at the minimum price share the demand equally.

If firm i ties at the minimum price, Pi, with m− 1 other firms, then it receives 1
m
D(Pi)

demand and makes profit of 1
m
PiD(Pi)− Ci(

1
m
D(Pi)). Given a vector of prices (Pi, P−i)

the payoff to firm i can be summarized as:

πi(Pi, P−i) =


PiD(Pi)− Ci(D(Pi)), if Pi < Pj ∀j 6= i;

1
m
PiD(Pi)− Ci(

1
m
D(Pi)) i ties with m− 1 firms at the lowest price;

0 if Pi > Pj for some j.

(1)

Definition 1 A pure strategy Bertrand equilibrium is a Nash equilibrium of the game

with payoffs defined by equation (1). That is, a vector of prices (P ∗i , P
∗
−i) such that

πi(P
∗
i , P

∗
−i) ≥ πi(Pi, P

∗
−i) for all Pi ∈ <+ and i ∈ N .

4A comprehensive analysis of equilibrium existence in the Bertrand model with sunk costs has been

provided by Coloma and Saporiti (2008). However, as this is not central to the problem addressed here

we do not pursue this issue.
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2.2 Bertrand Rationalization

Now suppose we do not know the economic primitives (cost functions and market de-

mand), but instead we observe the outcome of oligopoly competition in a homogenous

product market. There is a set of firms N = {1, ..., n}, n ≥ 2, and a set of observations

T = {1, ..., t̄}. In each period we observe firms’ prices, outputs and profits. We can

summarize the data set as (Pit, Qit,Πit)i∈N,t∈T . Define the following P ∗t = mini∈N Pit,

Q∗t =
∑

i∈N Qit and At = {i ∈ N : Pit = P ∗t }. In words, P ∗t is the minimum price in

observation t, Q∗t is the aggregate output in observation t, and At is the set of firms

which tie at the minimum price in observation t. Given that the possible set of observa-

tions of oligopoly competition could be extremely varied we shall focus upon data sets

which satisfy some basic requirements. We shall refer to observations which satisfy these

requirements as being generic homogeneous-good market data sets. The next definition

presents the formal requirements.

Definition 2 A set of oligopoly observations (Pit, Qit,Πit)i∈N,t∈T is a generic homogeneous-

good market data set if it satisfies the following conditions:

i) Pit > 0, Qit ≥ 0, Πit ≥ 0, PitQit ≥ Πit and Qit 6= Qit′ whenever t 6= t′.

ii) If Pit > Pjt, for some j 6= i, then Qit = 0.

iii) If Pit = Pjt = P ∗t then Qit = Qjt.

iv) |At| ≥ 2.

The first part of the definition states that prices are strictly positive, outputs and profits

are non-negative, revenue is greater than or equal to profit, and firms’ outputs are dif-

ferent in each observation. The requirements in (ii)-(iii) ensure that the observations are

consistent with firms competing in a homogeneous good market where consumers always

prefer to buy from the firms with the minimum price and firms tieing at the minimum

price receive an equal share of the market demand. The condition in (iv) means the data

set is such that at least two firms tie at the minimum price in each observation. This rules

out atypical observations where we may observe some firm acting as a monopolist. It

should be clear from the definition of the Bertrand model that any data set not satisfying

at least (ii) and (iii) could not be explained by the Bertrand model. Although we can

not directly observe firms’ cost functions we can infer costs at the observed output levels
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by calculating Cit = PitQit − Πit.

The data set will be said to be Bertrand rationalizable if there exist smooth, strictly

increasing cost functions, which are unchanged across the observations, and a smooth,

strictly decreasing market demand for each observation, which are consistent with the

observed prices, outputs and profits. Moreover, given the cost and demand functions,

the observed prices constitute a pure strategy Bertrand equilibrium in each observation.

The next definition formalizes this notion.

Definition 3 The set of observations (Pit, Qit,Πit)i∈N,t∈T is Bertrand rationalizable if

there exist smooth functions, C̄i(x) for each i ∈ N , D̄t(x) for each t ∈ T such that:

i) C̄i(0) = 0 and C̄ ′i(x) > 0 for all x ≥ 0.

ii) D̄t(x) ≥ 0 and D̄′t(x) ≤ 0 for all x ≥ 0 with the latter inequality holding strictly

whenever D̄t(x) > 0.

iii) C̄i(Qit) = Cit and D̄t(P
∗
t ) = Q∗t .

iv) The set of prices (P1t, ..., Pnt) is a Bertrand equilibrium in pure strategies for each

t ∈ T .

We shall introduce some notation which helps organize the observations. Define Ri(t) =

{t′ ∈ T : Qit′ ≥ Q∗t} and ri(t) = {t′ ∈ Ri(t) : Qit′ < Qit ∀t ∈ Ri(t)}. The set Ri(t)

contains the observations when the output of firm i is greater than, or equal, to the

aggregate output in observation t and ri(t) is the observation belonging to Ri(t) when

the output of firm i is the minimum of its output levels corresponding to observations in

Ri(t).

Define Si(t) = {t′ ∈ T : Qit′ < Qit} and si(t) = {t′ ∈ Si(t) : Qit′ > Qit ∀t ∈ Sit(t)}.

The set Si(t) contains the observations when the output of firm i is strictly less than its

output in observation t, and si(t) is the observation the output of firm i is the maximum

of its output levels in Si(t).

Define Q̂t = Q∗t/(|At|+1). In words, Q̂t is the aggregate market output in observation

t divided by the cardinality of At plus one. Let Mi(t) = {t′ ∈ T : Qit′ ≥ Q̂t} and

mi(t) = {t′ ∈ Mi(t) : Qit′ < Qit ∀t ∈Mi(t)}. The set Mi(t) is the set of observations

when the output of firm i is greater than or equal to Q̂t, and mi(t) is the observation

which minimizes output across observations in Mi(t).

We now introduce three conditions which collectively will characterize the set of ob-
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servations which can be rationalized by the Bertrand model.

Definition 4 The set of observations satisfy the increasing cost condition (ICC) if, when-

ever defined, Cit − Cisi(t) > 0.

The economic interpretation of the increasing cost condition is straightforward: it states

that whenever we observe firms produce higher outputs then their costs increase. It should

be clear that any data set which did not satisfy this condition could not be Bertrand ra-

tionalized because it would not be possible to construct a cost function which explains

the observe costs and is strictly increasing. Hence, ICC is necessary for Bertrand ratio-

nalization.

Definition 5 The set of observations satisfy the monopoly deviation condition (MDC) if,

whenever defined, P ∗t Qit − Cit ≥ P ∗t Q
∗
t − Ciri(t) with the inequality holding strictly when-

ever Qiri(t) > Q∗t .

The monopoly deviation condition states that the observed profits of the firms are no less

than the profits which they could obtain from supplying the entire market at the existing

price and incurring a cost at least as large as that required to meet the market demand

at the minimum price. The economic intuition is that when the condition is satisfied we

can construct cost and demand functions such that no firm has a profitable deviation by

undercutting the market. The condition rules out potential monopoly deviations. If this

condition were not satisfied then some firm would have a profitable deviation by slightly

undercutting the existing market price. Therefore, MDC is necessary for Bertrand ratio-

nalization.

Definition 6 The set of observations satisfy the tie deviation condition (TDC) if, when-

ever defined, P ∗t Q̂t − Cimi(t) ≤ 0 for all i ∈ N\At with the inequality holding strictly

whenever Qimi(t) > Q̂t.

The tie deviation condition states that whenever a firm does not tie at the minimum price

then the profit which it could achieve from tieing at the minimum price, and incurring a

cost at least as large as that required to meet the demand forthcoming, results in profit

which is no greater than zero. If the condition is satisfied then we can construct cost

and demand functions such that firms not tieing at the minimum price have no prof-

itable deviation by joining the price tie at the minimum price. If the condition is not

satisfied then for any cost and demand functions we construct, some firm would always
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have a profitable deviation by joining a price tie. Hence, TDC is necessary for Bertrand

rationalization.

To recall, the problem we wanted to address was whether the Bertrand equilibrium

could be stated in terms of prices, outputs and profits only. We now present our main

result which is a necessary and sufficient condition for a set generic observations to be

rationalized as pure strategy Bertrand equilibrium.

Theorem 1 A generic homogeneous-good market data set (Pit, Qit,Πit)i∈N,t∈T is Bertrand

rationalizable if, and only if, it satisfies ICC, MDC and TDC.

Proof. See the Appendix. �

2.3 Refutability when Costs are Unobservable

A further question which is relevant is how much information is needed to be able to

refute the Bertrand model. In the next section we present some simple examples of

data sets which illustrate that when we observe firms’ prices, outputs and profits the

Bertrand model is refutable. That is to say, there exist data sets which cannot be Bertrand

rationalized. However, the requirement that we observe firms’ prices, outputs and profits

is quite demanding. Suppose we cannot observe the profits of the firms. Then we cannot

infer firms’ costs and the data set which we observe reduces to (Pit, Qit)i∈N,t∈T . Given

that we only observe market prices and outputs is the Bertrand model refutable? That

is, can any data set (Pit, Qit)i∈N,t∈T be Bertrand rationalized?

Proposition 1 The set of observations (Pit, Qit)i∈N,t∈T can be refuted as being Bertrand

rationalizable.

Proof. We shall show that there is an example data set which cannot be Bertrand

rationalized despite not being able to observe firms’ costs. Consider the following data

set of three firms (n = 3) and two observations (t̄ = 2). As above, the first number is

the price, the second is output. In the first observation, firms 1 and 2 serve the market

1 2 3

t=1 (1, 3) (1, 3) (2,0)

t=2 (1
2
, 2) (1, 0) (1

2
, 2)

10



and firm 3 sets a strictly higher price. In the second observation, firms 1 and 3 serve the

market and firm 2 sets a strictly higher price. The profit of firm 3 in observation 2 is given

by Π32 = 1−C3(2). In the first observation firm 3 must not have a profitable deviation by

joining the price tie at the minimum price. The profit which firm 3 would obtain by joining

the price tie is Π31 = 2 − C3(2) (firms share the market demand equally). However, for

any cost function we construct for firm 3 we must have Π31 = 2−C3(2) > Π32 = 1−C3(2).

Which means firm 3 would always strictly prefer to join the price tie in observation one,

and which contradicts the observed prices being a Bertrand equilibrium. �

The example used to prove Proposition 1 can be explained in a standard “revealed

preference” manner: in observation one, −C3(0) is revealed at least as good as Π31 =

2 − C3(2) for firm 3. In observation two, Π32 = 1 − C3(2) is revealed at least as good

as −C3(0) for firm 3. However, Π31 = 2 − C3(2) > Π32 = 1 − C3(2) means that firm 3’s

price choices are “revealed” incompatible with Bertrand equilibrium.

Providing a complete characterization of which data sets, consisting of just prices and

quantities, can be Bertrand rationalized remains an open and interesting question for

future research.

3 Example Data Sets

Having presented the main results we present some example data sets to which we apply

the conditions. We focus on simple examples of duopolies (n = 2) with two observations

(t̄ = 2). As presented above the numbers represent prices, outputs and profits respec-

tively. We also note that some data sets which cannot be Bertrand rationalized can be

rationalized by the Cournot model, and vice versa.5 Therefore, both models are able to

explain a greater variety of observations than each individually.
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1 2

t=1 (1, 1, 1
2
) (1, 1, 1

2
)

t=2 (2, 2, 2) (2, 2, 2)

Table 1: Example 1

3.1 Example 1

Consider the first example data set. As both firms set the same price in each observation

the tie deviation condition is trivially satisfied, and all that remains to be checked is the

the increasing cost condition and the monopoly deviation condition are satisfied. As the

observations are symmetric we need only check one firm’s observations. In observation

one firm 1 incurs a cost of C11 = (1)(1) − 1
2

= 1
2
. In observation two, firm 1 produces

higher output and incurs a cost of C12 = (2)(2)− 2 = 2 and the increasing cost condition

is satisfied. In observation two, firm 1 produces an output equal to the aggregate output

in observation one so the monopoly deviation condition requires 1
2
≥ (1)(2)− 2 = 0 which

is satisfied. As all the conditions are satisfied we know the observations can be Bertrand

rationalized.

To see formally that we can construct market demands and cost functions which ex-

plain each observation as a pure strategy Bertrand equilibrium consider the following:

suppose each firm’s cost function is given by C(Q) = 1
2
Q2 this is smooth, strictly increas-

ing, and satisfies C(0) = 0, C(1) = 1
2

and C(2) = 2. Suppose that the market demand

in observation one is the piecewise-affine function D̄1(P1) = max{0, 4 − 2P1}. This is

smooth,6 strictly decreasing and satisfies D̄1(1) = 2. Given these market primitives the

monopoly profit of firms is given by:

π(P ) = P (4− 2P )− 1

2
(4− 2P )2

5The reader is referred to the paper by CQ for more details on the Cournot model, but essentially, the

condition which has to be checked for Cournot rationalizability, in addition to ICC, is what CQ describe

as the “discrete marginal condition”. This condition requires that P ∗t Qit′ − Cit′ < P ∗t Qit − Cit for all

t′ ∈ Si(t).
6The kink in the function which occurs when quantity demanded becomes zero could be smoothed

out on a small interval without affecting the analysis.
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The tied profit which the firms would obtain at any price is given by:

π(P, 2) =
1

2
P (4− 2P )− 1

8
(4− 2P )2

In Figure 1 we show the graphs of these two functions. The dashed function is the tied

profit function and the continuous function is the monopoly profit. It can be seen that

the market price in observation one, which is P = 1, is a Bertrand equilibrium given

the constructed functions because the tied profit is above the monopoly profit so that

no firm can profitably undercut the market. Now the variation in the data set has to be

Market price t=1

0.5 1.0 1.5 2.0
P

-8

-6

-4

-2

Π@PD Π@P, 2D

Figure 1: Bertrand rationalization of Example 1 t=1

explained by changes in the market demand. Suppose that in observation two the market

demand is again a piecewise-affine function given by D̄2(P2) = max{0, 8− 2P2}. This is

smooth, strictly decreasing and satisfies D̄2(2) = 4. Given that the firms’ cost functions

are fixed across the observations the monopoly profit is then given by:

π(P ) = P (8− 2P )− 1

2
(8− 2P )2

The tied profit is then given by:

π(P, 2) =
1

2
P (8− 2P )− 1

8
(8− 2P )2

In Figure 2 we show the graphs of these two functions. It can be seen that the change

in the market demand explains the variation in the data as the market price in observa-

tion two, which is P = 2, is now a Bertrand equilibrium where undercutting to obtain

monopoly profits is not a profitable deviation.
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It is worth noting that this example can also be rationalized by the Cournot model as

it satisfies the discrete marginal condition. Therefore, the observations could be explained

by firms choosing prices with a commitment to supply all the demand forthcoming, or

by choosing quantities and letting the market determine the price.

Market price t=2

1 2 3 4
P

-30

-25

-20

-15

-10

-5

Π@PD Π@P, 2D

Figure 2: Bertrand rationalization of Example 1 t=2

3.2 Example 2

Now consider the data set in Example 2. As both firms tie in each observation the tie

deviation condition is satisfied. All that remains is to check the increasing cost condition

and the monopoly deviation condition. In observation one, firm 1 incurs a cost of C11 =

(1)(1)− 1
2

= 1
2
. In observation two, firm 1 produces a higher output and incurs a cost of

C12 = (3
2
)(2) − 1 = 2 and the increasing cost condition is satisfied. In observation two,

firm 1 produces output equal to the aggregate output in observation 1. The monopoly

deviation condition requires that 1
2
≥ (1)(2)− 2 = 0 which is satisfied. We can conclude

that the observations can be Bertrand rationalized. Formally, the cost function C(Q) =

1
2
Q2 satisfies all the requirements for Bertrand rationalization, and the market demands in

observations one and two can be constructed as D̄1(P1) = max{0, 4−2P1} and D̄2(P2) =

max{0, 8− 8
3
P2} respectively.

However, it is interesting that despite the simplicity of the example, this data set

cannot be rationalized by the Cournot model. To gain some intuition as to why this is
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1 2

t=1 (1, 1, 1
2
) (1, 1, 1

2
)

t=2 (3
2
, 2, 1) (3

2
, 2, 1)

Table 2: Example 2

the case note that in observation two each firm produces 2 units of output. If a firm

were instead to produce only 1 unit of output they would obtain a market price greater

than 3
2

as the aggregate market quantity would decrease. The firm would incur a cost of

only 1
2
. Therefore, the profit from producing only 1 unit of output is strictly greater than

3
2
− 1

2
= 1. The result is that a firm could profitably deviate by reducing its quantity

in the second observation and which rules out rationalizing the observations as Cournot

equilibria.7

3.3 Example 3

Now consider the data set in Example 3. As both firms tie at the same price in each

observation the tie deviation condition is satisfied. Checking whether the increasing

cost condition is satisfied we can note that in observation one firm 1 incurs a cost of

C11 = (1)(1)− 3
4

= 1
4
. In the observation two, firm 1 produces a higher output and incurs

a cost of C12 = (2
3
)(2)− 1

3
= 1 and the increasing cost condition is satisfied. In observation

two, firm 1 produces a quantity equal to the aggregate market output in observation one.

For the monopoly deviation condition to be satisfied we require 3
4
≥ (1)(2)− 1 = 1

which is not satisfied. We can conclude that this set of observations cannot be Bertrand

rationalized.

To gain more intuition behind why the data set cannot be Bertrand rationalized

suppose we construct a cost function which is smooth, strictly increasing and passes

through the observed costs. For example, the cost function C(Q) = 1
4
Q2 satisfies C(0) =

0, C(1) = 1
4

and C(2) = 1. Supposing we also construct a market demand which is

smooth, strictly decreasing and satisfies D̄1(1) = 2 for observation one. If a firm were to

7Formally, the failure of the data set to be Cournot rationalizable is because it does not satisfy the

discrete marginal condition.
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undercut the market in observation one and post a price 1 − ε they would obtain profit

of D̄1(1 − ε)(1 − ε) − 1
4
(D̄1(1 − ε))2. The limit as ε → 0 of this profit function, which is

well defined because cost and demand functions are smooth, is (2)(1) − 1 = 1 which is

greater than the observed profit in observation one. For any smooth cost function and

market demand we construct, both firms will have profitable deviations. This is why the

observations cannot be Bertrand rationalized.

What is also interesting about this example is that it cannot be rationalized by the

Cournot model either. To see this, note that in observation two each firm produces 2

units of output. Suppose one firm were to deviate and produce only 1 unit of output

instead. Then, the market price for their output would be greater than 2
3

because the

aggregate market quantity reduces, and the firm incurs a cost of 1
4
. The profit which the

firm receives is then greater than (2
3
)(1)− 1

4
= 5

12
, which is greater than the observed profit

of 1
3

in observation two. For this reason, the observations cannot be Cournot rationalized.

1 2

t=1 (1, 1, 3
4
) (1, 1, 3

4
)

t=2 (2
3
, 2, 1

3
) (2

3
, 2, 1

3
)

Table 3: Example 3

3.4 Example 4

Consider the data set in Example 4. As both firms set the same price in both observations

the tie deviation condition is satisfied. In observation one, firm 1 incurs a cost of C11 =

(2)(1) − 1 = 1. In observation two, firm 1 produces higher output and incurs a cost of

C12 = (21
2
)(2) − 21

2
= 21

2
and the increasing cost condition is satisfied. In observation

two, firm 1 produces output equal to the aggregate output in observation one. Checking

whether the monopoly deviation condition is satisfied requires 1 ≥ (2)(2)− 21
2

= 11
2

which is not satisfied. We can conclude that this set of observations cannot be Bertrand

rationalized. However, this set of observations satisfy the discrete marginal condition and

can be rationalized by the Cournot model.
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1 2

t=1 (2, 1, 1) (2, 1, 1)

t=2 (21
2
, 2, 21

2
) (21

2
, 2, 21

2
)

Table 4: Example 4

4 Conclusion

An essential requirement of a scientific theory is that it can be tested against empirical

observations. In this paper we have identified the testable implications of the Bertrand

model. A set of necessary and sufficient conditions has been proposed for a data set to be

rationalized as pure strategy Bertrand equilibrium. Despite the generality of the results

presented here we should like to note a direction in which the results could be extended.

When we make observations of oligopoly competition which do not satisfy the conditions

for either Bertrand or Cournot rationalizability, such as Example 3 above, how are we to

explain the observations? It is well known that the Nash equilibrium solution is not the

only outcome which could result from firms being rational and rationality being common

knowledge. Is it possible for us to characterize the set of oligopoly observations which

are consistent with firms revealing some form of rationality which is perhaps weaker

than the Nash equilibrium solution? In the context of consumer theory, Manzini and

Mariotti (2009) have characterized weaker forms of rationality than that described by

the weak axiom of revealed preference, and they show that observations which violate

the weak axiom can sometimes still be explained as individuals optimizing some objective

function.8 Extending these weaker forms of rationality to oligopoly competition remains

an open and interesting question.

8They present an example which they call the ‘frugal consumer’ who minimizes an objective function

which is strictly increasing and convex in consumption goods and show that the choices of this individual

violate the weak axiom of revealed preference but can be explained by a weaker form of rationality known

as discard-rationality.
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5 Appendix

5.1 Proof of Theorem 1

First we prove the necessity part of the result, and second the sufficiency part.

Necessity Start by assuming that the observations are Bertrand rationalizable. Suppose

that ICC is not satisfied. Then for some i and t we have Cit−Cisi(t) =
∫ Qit

Qisi(t)
C̄ ′i(x)dx ≤ 0,

which contradicts C̄ ′i(x) > 0.

Second, suppose that MDC is not satisfied. Then for some i and t we have P ∗t Qit −

Cit ≤ P ∗t Q
∗
t − Ciri(t) and Qiri(t) > Q∗t . As the observations are rationalizable we have

P ∗t Qit−C̄it(Qit) ≤ P ∗t D̄t(P
∗
t )− C̄i(Qiri(t)). However, firm i could set a price P ∗t −ε, and by

choosing ε sufficiently small, we have D̄t(P
∗
t −ε) < Qiri

(t) and C̄i(D̄t(P
∗
t −ε)) < C̄i(Qiri(t)).

Which means firm i could obtain a strictly higher profit than that observed and which

contradicts the observed prices being a Bertrand equilibrium.9

Finally, suppose TDC is not satisfied. Then there is an i and t such that i ∈ N\At and

P ∗t Q̂t−Cimi(t) > 0. As the observations are rationalizable we have P ∗t Q̂t− C̄(Qimi(t)) > 0.

Given that i ∈ N\At we know that Pit > P ∗t , Qit = 0 and Πit = 0. However, firm i could

set its price equal to P ∗t , obtain demand of Q̂t, and profit of P ∗t Q̂t− C̄(Qimi(t)) > 0, which

contradicts the observed prices being a Bertrand equilibrium. Therefore, ICC, MDC and

TDC are all necessary conditions for Bertrand rationalizability.

Sufficiency To show that the conditions are sufficient for Bertrand rationalizability we

proceed in three steps. First, we show how the firms’ cost functions are constructed.

Second, we show how the market demands are constructed. Finally, we show that these

constructs satisfy all the requirements of Definition 2.

Step 1: Construction of the firms’ cost functions. First, as the observed costs satisfy

ICC we can construct a smooth, strictly increasing, cost function with the properties that

C̄i(Qit) = Cit and C̄i(0) = 0. Second, we impose the following three restrictions upon the

cost function.

1) For all t ∈ T such that Ri(t) is not empty and Qiri(t) > Q∗t choose the cost function

such that C̄i(Q
∗
t ) > max{P ∗t (Q∗t −Qit) + Cit, Cisi(t)}.

2) Define Vi = {t′ ∈ T : Ri(t
′) = ∅}, vi = {t′ ∈ Vi : Q∗t′ ≤ Q∗t ∀t ∈ Vi} and wi =

9The same argument can be used when P ∗t Qit − Cit < P ∗t Q∗t − C̄iri(t) and Qiri(t) = Q∗t .
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maxt∈Vi
P ∗t (Q∗t−Qit)+Cit. Then we can choose the cost functions such that C̄i(Q

∗
vi

) > wi.

3) For any i ∈ N\At such that Mi(t) 6= ∅ and Qimi(t) > Q̂t choose the cost function so

that C̄i(Q̂t) > P ∗t Q̂t. Similarly, if i ∈ N\At and Mi(t) = ∅ then we can choose the cost

function such that C̄i(Q̂t) > P ∗t Q̂t.

The restriction in (1) can be satisfied because as MDC holds we have that P ∗t Qit−Cit >

P ∗t Q
∗
t −Ciri(t) and we can choose the cost function so that C̄i(Q

∗
t ) = Ciri(t) − ε, provided

ε is sufficiently small. The restriction in (2) can always be satisfied because it states that

for those observations when we do not observe firm i producing an output at least as great

as the aggregate market output we can choose the cost function so that MDC is satisfied.

These restrictions ensure that for every firm and observation the cost functions satisfy

the inequality P ∗t Qit − C̄i(Qit) ≥ P ∗t Q
∗
t − C̄i(Q

∗
t ). The restriction in (3) can always be

satisfied because as TDC is satisfied for all i ∈ N\At we have P ∗t Q̂t−Cimi(t) < 0 whenever

Qimi(t) > Q̂t and we can choose the cost function so that C̄i(Qimi(t)) = Cimi(t) − ε.

Step 2: Construction of the market demands Consider the following piecewise-affine

market demand D̄t(Pt) = max{0, 2Q∗t −Q∗tPt/P
∗
t }. This is smooth,10 strictly decreasing

and satisfies D̄t(P
∗
t ) = Q∗t . Also, the revenue (as a function of price) from this market

demand is R(Pt) = 2Q∗tPt−Q∗tP 2
t /P

∗
t whenever demand is positive. The marginal revenue

is R′(Pt) = 2Q∗t − 2Q∗tPt/P
∗
t . Hence, the marginal revenue at P ∗t is R′(P ∗t ) = 0. That is,

revenue is maximized at P ∗t . This means PtD̄t(Pt) < P ∗t D̄t(P
∗
t ) whenever Pt 6= P ∗t . This

property will be used in Step 3.

Step 3: Sufficiency for Bertrand rationalizability. Having described how we can con-

struct the cost functions we now show that these constructs satisfy the requirements of

Definition 2 and that ICC, MDC and TDC are sufficient for Bertrand rationalizability.

First, we constructed cost functions in Step 1 which were smooth, strictly increasing and

satisfied C̄i(Qit) = Cit for each i ∈ N . Second, we constructed smooth, strictly decreasing

market demands satisfying D̄t(P
∗
t ) = Q∗t for each observation. Hence, conditions (i)-(iii)

of Definition 2 have been satisfied, and all that remains to be shown is that given the

constructed cost functions and market demands the observed prices constitute a Bertrand

equilibrium.

10The kink which occurs when quantity demanded becomes zero could be smoothed out on a small

interval without affecting the analysis.
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There are three possibly profitable price deviations:(i) a firm raises its price, (ii) a

firm with a price strictly greater than the minimum price could tie at the minimum price,

(iii) a firm could undercut the market a post a strictly lower price. We consider these

cases separately.

Case 1 : For any i ∈ At increasing their price results in receiving zero demand and

making zero profit because |At| ≥ 2. For any i ∈ N \ At increasing their price also results

in receiving zero demand and making zero profit. Therefore, no firm can profitably deviate

by increasing its price.

Case 2 : By construction, the cost function of any firm i ∈ N \ At satisfies P ∗t Q̂t −

C̄i(Q̂t) ≤ 0. If firm i set its price equal to the minimum it would receive demand of Q̂t,

by the equal sharing rule, and less than, or equal to zero, profit. Hence, this is not a

profitable deviation.

Case 3 : A firm undercuts the market and posts a price P ∗t − ε. The profit would

then be (P ∗t − ε)D̄t(P
∗
t − ε)− C̄i(D̄t(P

∗
t − ε)). As we constructed the market demand to

achieve the revenue maximum at P ∗t we have (P ∗t − ε)D̄t(P
∗
t − ε) < P ∗t D̄t(P

∗
t ) = P ∗t Q

∗
t .

As the market demand is strictly decreasing, and the cost functions strictly increasing we

have C̄i(D̄t(P
∗
t − ε)) > C̄i(Q

∗
t ). Combining these gives (P ∗t − ε)D̄t(P

∗
t − ε)− C̄i(D̄t(P

∗
t −

ε)) < P ∗t Q
∗
t − C̄i(Q

∗
t ). As the constructed cost functions satisfy P ∗t Qit − C̄i(Qit) ≥

P ∗t Q
∗
t − C̄i(Q

∗
t ) we have P ∗t Qit − C̄i(Qit) > (P ∗t − ε)D̄t(P

∗
t − ε) − C̄i(D̄t(P

∗
t − ε)). We

can conclude that no firm can profitably undercut the market, and the set of observed

market prices is a Bertrand equilibrium. �
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