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Abstract

We present a model of inductive inference that includes, as special
cases, Bayesian reasoning, case-based reasoning, and rule-based rea-
soning. This unified approach allows us to examine how the various
modes of inductive inference can be combined and how their relative
weights change endogenously. We establish conditions under which an
agent who does not know the structure of the data generating process
will decrease, over the course of her reasoning, the weight of credence
put on Bayesian vs. non-Bayesian reasoning. We show that even ran-
dom data can make certain theories seem plausible and hence increase
the weight of rule-based vs. case-based reasoning, leading the agent
in some cases to cycle between being rule-based and case-based.
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1 Introduction

Consider an agent who each year is called upon to predict the price of oil
over the subsequent year. To keep this illustration simple, suppose the agent
need only predict whether the average price will be higher or lower than the
previous year’s price. We can imagine the agent working for a hedge fund
that is interested in whether it should bet for or against an increasing price.

The agent does not make her oil-price prediction in a vacuum. Each
year, her research staff compiles a long list of data potentially relevant to the
price of oil, as well as a wealth of data identifying past values of the relevant
variables and past oil prices. For our example, however, let us assume that
the data include just two variables, namely a measure of the change in the
demand for oil and a measure of the change in the severity of conflict in the
Middle East. Each is assumed to take two values, indicating whether there
has been an increase or decrease in the relevant measure. Each year the
agent receives the current changes in demand and in conflict, examines the
data from previous years, and then predicts whether the price will increase
or decrease. How should the agent reason?1

The mode of reasoning most widely used in economic modeling is Bayesian.
The agent first formulates the set of possible states of the world, where a state
identifies the strength of demand, the measure of conflict, and the price of
oil, in each year over the course of her horizon. The agent then formulates
a prior probability distribution over this state space, identifying the relative
weights the agent places on the various states. This prior distribution will
reflect models and theories of the market for oil that the agent finds helpful,
her analysis of past data and past events in this market, and any other prior
information she has at her command. Once this prior has been formulated,
the agent’s predictions are a relatively straightforward matter of applying
Bayes’s rule, as new observations allow her to rule out some states and con-
dition her probability distribution on the surviving states in order to make

1In personal conversation, a hedge fund principal indicated that his fund used all three
methods of reasoning introduced in this section in predicting the likelihood of mortgage
defaults.
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new predictions.
Another mode of reasoning is case-based. Each year, the agent looks for

similar cases in the past, and regards an outcome as more likely if it has
materialized more often in more similar past cases. For example, she may
argue that the current state of conflict in the Middle East is reminiscent of
the state of affairs in 1991 or in 2003, and hence predict that there will soon
be a war and an increase in the price of oil.

Finally, rule-based reasoning calls for the agent to base her predictions on
regularities that she believes characterize the market for oil. For example,
the agent may adopt a rule that any increase in the level of demand leads to
an increase in the price of oil. Based on this and her expectation that the
Chinese economy will continue to grow, the agent might reasonably predict
that the price is about to rise.

The boundaries between the three modes of reasoning are not always
sharp. Case-based and rule-based agents can update the probabilities they
attach to the validity of various analogies or rules in light of their experi-
ence, much as would a Bayesian. A Bayesian will base her choice of a prior
probability on analogies to similar past cases, as well as on general rules that
she has observed. To make one boundary precise, we say that reasoning is
“Bayesian” if all past analogies, regularities, and other prior information can
be summarized in a prior probability distribution over the possible remain-
ing histories, with all subsequent reasoning captured by standard Bayesian
updating.

This paper presents a framework that unifies these three modes of rea-
soning (and potentially others), allowing us to view them as special cases of
a general learning process. The agent attaches weights to hypotheses. Each
hypothesis is a set of states of the world, which captures a way of thinking
about how events in the world will develop, and the associated weights cap-
tures the relative influence that the agent attaches to the various hypotheses.
To generate a prediction, the agent sums the weight of all hypotheses that
necessitate each possible outcome, and then ranks outcomes according to
their associated total weights. Learning is performed simply by ruling out
hypotheses that have been proven wrong. In the special case where each
hypothesis consists of a single state of the world, our framework is the stan-
dard Bayesian model, and the learning algorithm is equivalent to Bayesian
updating. Employing other hypotheses, which include more than a single
state each, we can capture other modes of reasoning, as illustrated by simple
examples of case-based and of rule-based reasoning.
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The unified framework allows us to examine the relationship between the
various modes of reasoning, identify their differences, and delineate the scope
of their applicability. Moreover, using this framework, we can analyze the
dynamics of the weights assigned to the different reasoning modes as data
accumulate. We first compare Bayesian to non-Bayesian modes of reasoning
and identify conditions under which Bayesian reasoning will give way to
other modes of reasoning. This result describes the outcome of the reasoning
process, without taking a stance regarding its effectiveness or optimality.
One could use our framework to add assumptions about the data generating
process, in order to derive further results about the optimality of reasoning
modes relative to the world to which they are applied, but our focus in this
paper is on the question of which mode of reasoning will emerge as dominant
in the agent’s mind. We then use the assumptions behind this result to
distinguish between situations in which the Bayesian approach is likely to be
robust and situations in which it is not.

Finally, we discuss case-based and rule-based reasoning, showing that
even random data can occasionally give rise to belief in a specific theory
and hence in rule-based reasoning in general, until the theory is refuted
and agents resort to case-based reasoning, potentially leading them to cycle
between case-based and rule-based reasoning.

2 The Framework

At each period t ∈ {0, 1, . . . , T − 1} there is a characteristic xt ∈ X and an
outcome yt ∈ Y . The sets X and Y are assumed to be finite and non-empty,
with Y containing at least two possible outcomes.2

In predicting the price of oil, the characteristic might identify the type
of political regime and the state of political unrest in various oil-producing
countries, as well as describe the extent of armed conflict in the Middle East,
indicate whether new nuclear power plants have come on line or existing ones
been disabled by accidents, describe the economic conditions of the major

2No conceptual problems arise in extending the analysis to infinite sets X and Y or an
infinite number of periods. The sums over hypotheses that appear below would then be
replaced by integrals. However, this requires the definition of an algebra, each element of
which is a set of sets of states of the world. Specifying this algebra gives rise to a collection
of technical complications that veil the message of the paper without having substantive
implications.
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oil importers, summarize climate conditions, and so on. In our simplified
example, Y has only two elements, {0, 1}, and each x = (x1, x2) ∈ X has
two components, each also taking values in {0, 1}, with a 1 in each case
indicating an increase in the relevant variable and a 0 indicating a decrease
(or no change).

We make no assumptions about independence or conditional indepen-
dence of the variables across periods. Our preferred interpretation is that
this lack of structure reflects the agent’s lack of knowledge about the data
generating process—we are most interested in cases in which the agent has
no certain knowledge that she can bring to bear on the prediction problem.
For example, we do not think of statistical inference, in which the agent
knows she faces a sequence of independent random variables from a fixed
distribution, as our prime application. This is in keeping with our example
of an agent who must predict long-term movements in the price of oil, rather
than daily fluctuations of the price around a long-term trend.3

A state of the world ω identifies the characteristic and outcome that ap-
pear in each period t, i.e., ω : {0, 1, ..., T−1} → X×Y . We let (ωX(t), ωY (t))
denote the element (xt, yt) of X×Y appearing in period t given state ω, and
let

Ω = (X × Y )T

denote the set of states of the world. In our example, a state identifies the
sign of changes in the strength of demand, the level of conflict, and the price
of oil in each of the next T periods.

A period-t history

ht(ω) = (ω(0), . . . , ω(t− 1), ωX(t))

identifies the characteristics (sign of changes in the levels of demand and of
conflict) and outcomes (sign of changes in the price of oil) that have appeared
in periods 0 through t−1, as well as the period-t characteristic, given state ω.
We let Ht denote all possible histories at period t, i.e., Ht = {ht(ω) |ω ∈ Ω}.

In each period t the agent observes a history ht and makes a prediction
about the period-t outcome, ωY (t) ∈ Y . A prediction is a ranking of subsets
in Y given ht. In our example, Y = {0, 1}, and the only interesting subsets
to compare are those consisting of specific outcomes, {0} and {1}. But in a

3When statistical learning is possible, we would be most interested in the unstructured
learning process that remains after the agent has learned what she can from such inference.
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richer model Y could consist of all possible prices of oil, and we would allow
the agent to consider subsets of Y of the form “the price of oil will exceed
$100 per barrel” or “the price of oil will be below $80 a barrel,” and to rank
some such subsets as being more likely than others. Hence, the agent may
view a price of oil above $100 as being more likely than a price under $100,
which is in turn more likely than a price of precisely $110; or, she may view
an increase in price as more likely than a decrease, and so forth.

Predictions are made with the help of hypotheses. A hypothesis is an
event A ⊂ Ω. It can represent a specific scenario, that is, a single state of the
world, in which case A = {ω}, and such hypotheses will suffice to capture
Bayesian reasoning. However, hypotheses can contain more than one state,
and thereby capture rules and analogies, as illustrated in the next section. In
general, any reasoning aid one may employ in predicting yt can be described
by the set of states that are compatible with it. Let A denote the set of all
hypotheses, that is A = 2Ω.

The agent makes use of these hypotheses, and in particular assigns various
weights of credence to them, with the help of a model. Formally, a model is
a function φ : A → R+, where φ(A) is interpreted as the weight attached to
hypothesis A for the purpose of prediction. This model will bring to bear all
of the prior information the agent has about the prediction problem.

For a subset of hypotheses D ⊂ A, we denote the total weight of credence
commanded by these hypotheses by

φ(D) =
∑
A∈D

φ(A).

For example, we might be interested in the total weight attached to all hy-
potheses that predict an increase in the price of oil.

To make predictions in period t, the agent first identifies, for any subset
of outcomes Y ′ ⊂ Y , the set of hypotheses that have not been refuted by
previous observations and that predict an outcome in Y ′. She then adds the
weights of credence attached to these hypotheses. The agent considers the
set of outcomes Y ′ as more likely than the set Y ′′ if and only if the former
attains a higher total weight of credence than the latter.

Formally, suppose the agent has observed history ht in period t and con-
siders the set of outcomes Y ′. Then the cylinder set

[ht] = {ω ∈ Ω | (ω(0), . . . , ω(t− 1), ωX(t)) = ht}
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is the set of all states that are compatible with the history ht, that is, [ht] is
the set of states whose period-t history matches ht, with different states in
this set corresponding to different possible future developments. Next,

[ht, Y
′] = {ω ∈ [ht] |ωY (t) ∈ Y ′}

is the set of all states that are compatible with the history ht and with the
next outcome being in the set Y ′. A hypothesis A has not been refuted by
history ht if A ∩ [ht] 6= ∅. The set of hypotheses that have not been refuted
by history ht and predict an outcome in Y ′ is

A(ht, Y
′) = {A ∈ A |∅ 6= A ∩ [ht] ⊂ [ht, Y

′]} , (1)

and hence the total weight assigned to Y ′ by all the unrefuted hypotheses at
ht is φ(A(ht, Y

′)).4

The agent’s prediction is a ranking of the subsets of Y , with Y ′ considered
more likely than Y ′′ if and only if

φ(A(ht, Y
′)) > φ(A(ht, Y

′′
)). (2)

It sacrifices no generality to assume that φ(A) = 1. Indeed, one may
continually renormalize the function φ so that the total weight of all unrefuted
hypotheses is 1 at each and every history ht (unless, of course, this weight is
zero), as is the case with Bayesian updating, without affecting the results—
doing so would never reverse an inequality of the type given in (2). We do
not follow this convention here to simplify the formulae and to avoid the need
to deal with zero denominators separately.

Intuitively, one may think of each hypothesis A as an expert, who argues
that the state of the world has to be in the event A. The weight φ(A) is a
measure of the expert’s reliability in the eyes of the agent. The agent listens
to the forecasts of all experts and, when comparing two possible predictions
Y ′ and Y ′′, chooses the prediction that commands higher total support from
the experts. When an expert is proven wrong, he is asked to leave the room
and his future forecasts are ignored.

The use of states of the world to represent possible outcomes is standard in
decision theory, as is the summation of a function such as φ to capture beliefs,

4Observe that the hypotheses ∅ and Ω are never included in A(ht, Y
′) for any Y ′ ( Y .

The impossible hypothesis ∅ is not compatible with any history ht, whereas the certain
hypothesis Ω is tautological at every history ht.
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and the elimination of hypotheses that have been proven wrong. The only
departure we have taken from the familiar framework of Bayesian updating
is to allow hypotheses that consist of more than one state.5 To confirm this,
Section 3.1 shows that if we restrict attention to singe-state hypotheses, then
we have precisely the familiar framework of Bayesian reasoning. Expanding
the framework to encompass multi-state hypotheses is necessary if we are to
capture case-based and rule-based reasoning (cf. Sections 3.2 and 3.3). Our
framework thus captures case-based and rule-based reasoning by making the
most obvious, minimal generalization of the familiar Bayesian framework.
One could imagine further generalizations, but the framework suffices for
our purposes.

To place this paper in the decision-theory literature, we note that our pro-
cedure (1)–(2) for assigning total weights of credence to subsets of outcomes
can be viewed as a special case of the Dempster-Shafer theory of evidence
(Dempster [9], Shafer [40]). In this theory, as here, the total belief in an
event is the sum of the weights assigned to its subsets. The resulting belief
function is also known as a totally monotone capacity. Moreover, the updat-
ing induced by our framework is equivalent to the Dempster-Shafer updating
rule. This updating rule has been axiomatized by Gilboa and Schmeidler [17]
in the context of Choquet expected utility maximization.6

Notice that we have restricted attention to deterministic hypotheses. One
sees this in (1), where hypotheses are either clearly compatible or clearly in-
compatible with a given history. This is obviously restrictive—we are often
interested in drawing inferences about theories that do not make sharp pre-
dictions. However, a model in which the implications of the evidence for
various hypotheses is dichotomous simplifies the analysis by eliminating as-
sessments as to which theories are more or less likely for a given history,
in the process allowing us to focus attention on the resulting induction.7

Section 5.2 sketches the beginnings of a generalization to non-deterministic

5In the process, the notion of compatibility needs to be adapted: whereas a single
state ω is compatible with history ht if ω ∈ [ht], a (possibly multistate) hypothesis A is
compatible with history ht if A ∩ [ht] 6= ∅.

6No familiarity with this literature is required for the present paper. We came to work
with the present model not because portions of it have antecedents in the literature, but
because it captures other modes of reasoning while staying as close as possible to the
familiar Bayesian model.

7For similar reasons, econometricians typically simplify discussions of identification by
assuming that parameters are known, thereby eliminating problems of estimation.
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hypotheses.
Looking forward, it will be useful to have notation for the set of hypothe-

ses, in a subset D ⊂ A, that are relevant for prediction at history ht:

D(ht) = ∪Y ′(Y {A ∈ D |∅ 6= A ∩ [ht] ⊂ [ht, Y
′]}

Hence, D(ht) is the set of hypotheses in D that have not been refuted by ht
and that could lend their weight to some non-tautological (Y ′ ( Y ) predic-
tion after history ht, and φ(D(ht)) will be the total weight of credence for
these hypotheses.8

3 Special Cases

The unified framework is sufficiently general as to capture several standard
models of inductive reasoning.

3.1 Bayesian Reasoning

We first show that our framework reduces to Bayesian reasoning if one re-
stricts attention to hypotheses that consist of one state each.

Bayesian reasoning appeared explicitly in the writings of Bayes [2].9 Be-
ginning with the work of de Finetti and his followers, it has given rise to
the Bayesian approach to statistics (see, for example, Lindley [28]). Rely-
ing on the axiomatic approach of Ramsey [34], de Finetti [7, 8], and Savage
[37], it has grown to become the dominant approach in economic theory and
in game theory. The Bayesian approach has also achieved great success in
computer science and artificial intelligence, as in the context of Bayesian net-
works (Pearl [33]). Within the philosophy of science, notable proponents of
the Bayesian approach include Carnap [4] and Jeffrey [23].

These manifestations of the Bayesian approach differ in several ways, such
as the scope of the state space and the degree to which Bayesian beliefs are
related to decision making, but they share two common ingredients: (i) un-
certainty is always quantified probabilistically; and (ii) when new information
is obtained, probabilistic beliefs are updated according to Bayes’s rule.

8The restriction of attention to non-tautological hypotheses is introduced in order to
render the numerical values of φ(D(ht)), for different classes D, more intuitive. Our main
result also holds, and is in fact easier to prove, if one leaves in the set D(ht) also hypotheses
that are unrefuted and that do not restrict the prediction y ∈ Y in any way.

9Precursors can be found in the early days of probability; see Bernoulli [3].
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To embed Bayesian reasoning in our framework, define the set of Bayesian
hypotheses to be

B = {{ω} |ω ∈ Ω} ⊂ A. (3)

Each of the Bayesian hypotheses thus fully specifies a single state of the
world. In our price-of-oil example, a specific scenario might be that, at each
t, demand for oil will increase, the level of conflict will not, and the price
of oil will increase. This identifies a unique state ω with ωX(t) = (1, 0) and
ωY (t) = 1 for all t, and the corresponding hypothesis is A = {ω}.

A Bayesian agent will attach credence to no other hypotheses, i.e.,

φ(A) = 0 if |A| > 1.

We can now state,

Observation 1 Let p be a probability on Ω. There exists a model φp such
that φ (A\B) = 0 and such that for every history ht, there is a constant λ > 0
for which, for every Y ′ ⊂ Y

p (yt ∈ Y ′ | [ht]) = λφp(A(ht, Y
′)).

This observation is verified by constructing the model φp ({ω}) = p ({ω}),
attaching to each hypothesis a weight of credence equal to the prior prob-
ability of the corresponding state. It is easy to verify that φp satisfies the
equality of Observation 1 and that it is the unique such model.

Bayesian reasoning is thus a special case of our framework: every Bayesian
belief can be simulated by a model φ, and Bayesian updating is imitated by
our process of excluding refuted hypotheses. Apart from the normalization
step, which guarantees that updated probabilities continue to sum up to 1
as hypotheses are deleted but has no effect on relative beliefs, Bayesian up-
dating is nothing more than the exclusion of refuted hypotheses from further
prediction.

In our example, a Bayesian hypothesis specifies the sign of changes in the
level of demand, the level of conflict, and the price (all taking the values 0 or
1) in each of periods t = 0, ..., T−1. The agent’s prior distribution over these
states is critical. Let us consider two possibilities. We refer to one as the
agnostic Bayesian. This agent brings no knowledge to the problem, and hence
places a uniform prior distribution over the set of states. Alternatively, we
might consider a confident Bayesian who has clear ideas about which states
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are likely. Suppose, for example, the agent believes that the market for oil is
captured by a function f(x1, x2), with the price of oil increasing in period t if
and only if f(x1

t , x
2
t ) > 0. The agent’s prior will accordingly attach positive

probability only to states satisfying this relationship in each period, and will
divide the prior probability among such states accordingly to how likely she
finds the corresponding sequences of signs of changes in demand and conflict
levels.

Given that our model captures Bayesian reasoning via an assumption
that hypotheses contain only a single state, it is worth noting that an agent
who assigns positive weight to non-Bayesian hypotheses (i.e., φ(A\B) > 0)
will not be “Bayesian” by any common definition of the term. For example,
suppose that A = {ω1, ω2} and φ(A) = δ > 0. Such an agent can be
viewed as arguing, “I think that one of ω1 or ω2 might occur, and I put a
weight δ > 0 on this hypothesis, but I cannot divide this weight between the
two states.” Intuitively, this abandons the Bayesian tenet of quantifying all
uncertainty in terms of probabilities. Formally, if we use the resulting weight
function to define a binary relation % over events, interpreted as “at least as
likely as,” we will find that such a relation will not satisfy de Finetti’s [7, 8]
cancellation axiom: it can be the case that, for two events, B,C, B % C
but not B\C % C\B. In addition, if we use the weight function to make
decisions by maximization of a Choquet integral of a utility function, the
maximization will fail to satisfy Savage’s [37] “sure-thing principle”(axiom
P2).10 As a result, especially upon adding decisions to our model of beliefs
(cf. Section 5.4), we have a converse to Observation 1: the decision maker
will be Bayesian if and only if φ(A\B) = 0.

3.2 Case-Based Reasoning

Analogical reasoning was explicitly discussed by Hume [22], and received
attention in the twentieth century in the guise of case-based reasoning (Ries-
beck and Schank [36], Schank [38]), leading to the formal models and axiom-
atizations of Gilboa and Schmeidler [18, 19, 20].

10If positive weight is assigned to non-Bayesian hypotheses, one should specify how
expected utility maximization is generalized to a theory of decision making where beliefs
are given by a function φ that is not generally additive. A well-known such generalization
is the maximization of a Choquet integral suggested by Schmeidler [39]. See Gilboa [14]
for details and precise definitions. The axiomatic systems of de Finetti and Savage are
also given in Kreps [26].
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We consider here a very simple version in which case-based prediction is
equivalent to kernel classification.11 The agent has a similarity function over
the characteristics,

s : X ×X → R+,

and a memory decay factor β ≤ 1. Given history ht = ht(ω) ∈ Ht, a possible
outcome y ∈ Y is assigned the weight

S(ht, y) =
t−1∑
i=0

βt−is(ωX(i), ωX(t))1{ωY (i)=y},

where 1 is the indicator function of the subscripted event. Hence, the agent
may be described as if she considered past cases in the history ht, chose
all those that resulted in some period i with the outcome y, and added to
the sum S(ht, y) the similarity of the respective characteristic ωX(i) to the
current characteristic ωX(t). The resulting sums S(ht, y) can then be used
to rank the possible outcomes y. If β = 1 and in addition the similarity
function is constant, the resulting number S(ht, y) is proportional to the
relative empirical frequency of y’s in the history ht.

To embed case-based reasoning in our framework, we first define case-
based hypotheses as follows. For every i < t ≤ T − 1, x, z ∈ X, let

Ai,t,x,z = {ω ∈ Ω |ωX(i) = x, ωX(t) = z, ωY (i) = ωY (t)} .

We can interpret this hypothesis as indicating that, if the input data in
period i are given by x and are given in period t by z, then periods i and t
will produce the same outcome (value of y). Notice that in contrast to the
Bayesian hypotheses, a single case-based hypothesis consists of many states:
Ai,t,x,z does not restrict the values of ωX(k) or ωY (k) for k 6= i, t.12

Let the set of all hypotheses of this type be denoted by

CB = {Ai,t,x,z | i < t ≤ T, x, z ∈ X } ⊂ A. (4)

For example, our oil-price predictor may focus only on the years in which
demand and conflict had the same trends as in the current period, and make

11See Akaike [1] and Silverman [41].
12A case-based hypothesis thus contains a number of states (to be precise,
|Y | (|X||Y |)T−2) that is exponential in T . The hypothesis Ai,t,x,z can only be refuted
at periods i (if ωX(i) 6= x) or t (if ωX(t) 6= z or ωY (i) 6= ωY (t)).
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her prediction based on the prevalence of price increases in these periods.
This would correspond to the similarity function

s
((
x1, x2

)
,
(
z1, z2

))
=

{
1 x1 = z1, x2 = z2

0 otherwise
.

Alternatively, the agent may assign some weight also to past periods that
resembled the current period only in one aspect, and use a similarity function
such as

s
((
x1, x2

)
,
(
z1, z2

))
=


1 x1 = z1, x2 = z2

a x1 = z1, x2 6= z2

b x1 6= z1, x2 = z2

0 otherwise

for some a, b ∈ (0, 1).
We can now state:

Observation 2 Let there be given s : X×X → R+ and β ≤ 1. There exists
a model φs,β, such that φ(A\CB) = 0 and for every history ht and every
y ∈ Y ,

S(ht, y) = φs,β(A(ht, {y})).

This observation is verified by constructing the model

φs,β(Ai,t,x,z) = β(t−i)s(x, z). (5)

At history ht = ht(ω), only the hypotheses
{
Ai,t,ωX(i),ωX(t) | i < t

}
yield

predictions that are included in a singleton {y}. Hence, of the total number
of case-based hypotheses,

|CB| = |X|2
(
T
2

)
,

only t hypotheses will affect the prediction, corresponding to the t possible
hypotheses of the form Ai,t,ωX(i),ωX(t). These t hypotheses will be divided
among the |Y | possible values, each lending its weight to the outcome that
occurred at the corresponding period i , ωY (i).

In general, we could define similarity relations based not only on single
observations but also on sequences, or on other more general patterns of
observations. Such higher-level analogies can also be captured as hypotheses
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in our framework. For instance, the agent might find history ht similar to
history hi for i < t, because in both of them the last k periods had the same
observations. This can be reflected by hypotheses including states in which
observations (i − k + 1), ..., i are identical to observations (t − k + 1), ..., t,
and so forth.

3.3 Rule-Based Reasoning

The earliest models of reasoning employing general rules date back to Greek
philosophy and its study of logic, focusing on the process of deduction and
the concept of proof. The rise of analytical philosophy, the philosophy of
mathematics, and artificial intelligence greatly extended the scope of rule-
based reasoning, including its use for modeling human thinking, as in the
introduction of non-monotonic (McCarthy [30], McDermott and Doyle [31],
Reiter [35]), probabilistic (Nilsson [32]), and a variety of other new logics.13

Various rules can be captured by assigning weights to appropriate hy-
potheses A in our framework. To consider an extreme example, the rule “the
price of oil always rises” corresponds to the hypothesis

A = {ω ∈ Ω |ωY (t) = 1 ∀t} .

There are many states in this hypothesis, featuring different sequences of
changes in the values of the level of demand and conflict.

Our framework can also encompass association rules, or rules that can be
expressed as conditional statements. For example, consider the rule “if the
level of conflict has risen, so will the price of oil.” This rule can be described
by

A =
{
ω ∈ Ω

∣∣ω2
X(t) = 0 or ωY (t) = 1 ∀t

}
. (6)

(Recall that ω2
X(t) indicates whether there was an increase in the index of

conflict, and ωY (t) an increase in the price of oil. The rule “A implies B” is
then read as “A is false, or B is true, or possibly both.”)

A rule will be excluded from the summation defining φ(A(ht)) as soon as
a single counter-example is observed. Thus, if history ht is such that for some
i < t we observed an increase in the level of conflict that was not followed
by a rise in the price of oil, the hypothesis (6) will not be used for further
analysis.

13See also Gardenfors [13] and Levi [27].
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When an association rule is unrefuted, it may or may not affect predic-
tions, depending on whether its antecedent holds. Specifically, if we consider
a period t in which the level of conflict did not rise, the antecedent of rule A
does not hold (ω2

X(t) 6= 1). This ensures that any value ωY (t) is compatible
with A, and hence that the weight of the rule φ(A) will not be counted in
the summation φ(A(ht, Y

′)) for any Y ′ ( Y . In general, if the antecedent
of a rule is false, the rule becomes vacuously true and does not affect pre-
diction. However, if (in this example) we do observe a rise in the level of
conflict, ω2

X(t) = 1, the rule has bite (retaining the assumption that it is as
yet unrefuted). Its weight of credence φ will be added to the prediction that
the price of oil will rise, ωY (t) = 1, but not to the prediction that it will not,
ωY (t) = 0.

Our framework also allows one to capture functional rules, stating that
the value of y is a certain function f of the value of x, such as

A = {ω ∈ Ω |ωY (t) = f(ωX(t)) ∀t} .

Holland’s [21] genetic algorithms employ additive aggregation over rules.
This method addresses a classification problem where the value of y is to be
determined by the values of x = (x1, ..., xm), based on past observations of
x and y. The algorithm maintains a list of association rules, each of which
predicts the value of y according to values of some of the xj’s. For instance,
one rule might read “if x2 is 1 then y is 1” and another, “if x3 is 1 and x7

is 0 then y is 0.” In each period, each rule has a weight that depends on its
success in the past, its specificity (the number of xj variables it involves) and
so forth. The algorithm chooses a prediction y that is a maximizer of the
total weight of the rules that predict this y and that apply to the case at
hand.

The prediction part of genetic algorithms is therefore a special case of our
framework, where the hypotheses are the association rules involved. How-
ever, in a genetic algorithm the set of rules and their associated weights do
not remain constant, with rules instead being generated by a partly-random
process, including crossover between “parent genes,” mutations, and so forth.

There are many examples of rule-based reasoning that go beyond the
simple cases we have just discussed. Indeed, any rule with a clear empirical
meaning corresponds to a hypothesis A, which is its extension: the set of
states of the world that are consistent with the rule.
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4 Dynamics of Reasoning Methods

In this section, we consider how reasoning changes as a result of evidence.
To study long-term effects, we consider a collection of frameworks, indexed
by T , with the value of T growing arbitrarily large. The sets X and Y are
assumed to remain the same for all T . In the framework with T periods there
is a state space ΩT , with a set of hypotheses AT = 2ΩT . The agent uses a
model φT . The sets of Bayesian (BT ) and case-based (CBT ) hypotheses for
each T are defined as in (3) and (4).

4.1 Bayesian vs. non-Bayesian Reasoning

4.1.1 Assumptions

We provide conditions under which Bayesian reasoning fades into insignifi-
cance. We assume that at least some weight is placed on both Bayesian and
case-based reasoning:

Assumption 1 For some ε > 0, for every T ,

φT (BT ), φT (CBT ) > ε.

Assumption 1 means that the agent has a certain minimal degree of cre-
dence in both modes of reasoning, independent of T . Observe that there can
be many other types of hypotheses that get non-zero weight according to φ.
We explain in Section 4.1.2 how this assumption could be reformulated to
make no reference to case-based hypotheses.

We can think of the agent as allocating the overall weight of credence
in a top-down approach, first allocating weights to modes of reasoning, and
then to specific hypotheses within each mode of reasoning. How should the
weights be split within each set of hypotheses? We start with the weight of
the Bayesian hypotheses, φT (BT ). If the agent knows, or believes she knows
something about the process she is about to observe, this knowledge should
be reflected in her prior beliefs φT . In an extreme case, the agent might have
φT ({ω}) = 1 for a particular ω. We are interested in the contrasting case
of an agent who believes that she knows relatively little about the process
she is observing. Such an agent cannot rule out any state and thus assigns
a positive weight to each state ω.
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How should these prior probabilities be chosen? A simple and common
approach is to assume that the agent has a uniform prior over the state space,
so that

φT ({ω})
φT ({ω′})

= 1,

for any pair of states ω and ω′, corresponding to the agnostic Bayesian of Sec-
tion 3.1. This, however, is clearly restrictive. We seek a weaker assumption,
requiring only that the probability assigned to any particular state cannot
be too much smaller than that assigned to another state. Thus, one may
assume that there exists M > 0 such that, for every ω, ω′ ∈ ΩT and every T ,

φT ({ω})
φT ({ω′})

< M. (7)

We weaken this condition still further, allowing M to depend on T , and
assume only that the ratio between the probabilities of two states cannot go
to infinity (or zero) too fast as we consider ever-larger values of T . Formally,

Assumption 2 (Open-mindedness) There exists a polynomial P (T ) such
that, for every T and every two states ω, ω′ ∈ ΩT ,

φT ({ω})
φT ({ω′})

≤ P (T ).

Assumption 2 allows for a more general class of beliefs than our first
equal-probability or bounded-probability-ratios assumptions. In particular,
for each T , there exists M = MT satisfying (7), where MT is allowed to tend
to ∞ as T → ∞. The assumption is, however, that this convergence is not
too fast, in the sense that it is bounded by a polynomial in T .

Assumption 2 will typically be violated if, as often assumed in Bayesian
models, the agent believes she faces successive independent and identically-
distributed (iid) draws. For example, Assumption 2 will fail if, regardless of
the levels of demand and conflict, the agent believes that the change in the
price of oil is independently drawn to be positive (ωY (t) = 1) in each period
with probability p > 0.5. For an easy illustration of this failure, observe that
the ratio of the probabilities of a string of T successive 1’s and a string of
T successive 0’s is (p/(1 − p))T , and hence exponential in T . In the terms
of Section 3.1, this is a confident Bayesian: because she believes that she
knows quite a bit about the data generating process, she considers some
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states much more likely than others. Section 4.1.3 introduces and discusses
generalizations of Assumption 2 that suffice for Theorem 1 and encompass
such iid draws—our result thus continues to hold in such cases.14

We make an analogous assumption regarding the way that the weight of
credence is distributed among the various case-based hypotheses. It would
suffice for our result to impose a precise analog of Assumption 2, namely that
there is a polynomial Q(T ) such that, for any T and any pair of case-based
hypotheses Ai,t,x,z and Ai′,t′,x′z′ , we have

φT (Ai,t,x,z)

φT (Ai′,t′,x′,z′)
≤ Q(T ). (8)

However, suppose (analogously to (5)) that there exists a similarity function
s : X × X → R+, a decay factor β ∈ (0, 1], and, for every T , a constant
cT > 0 such that, for every i < t < T and every x, z ∈ X,

φT (Ai,t,x,z) = cTβ
t−is(x, z). (9)

In this case, the characteristics x, z ∈ X determine the relative weights placed
on the case-based hypotheses involving information of a given vintage (i.e.,
a given value of t− i), with β ≤ 1 ensuring that older information is no more
influential than more recent information. This formulation is rather natural,
but it violates (8) if β < 1, as the relevance of older vintages then declines
exponentially. Fortunately, there is an obvious and easily interpretable gen-
eralization of (8) that allows us to encompass (9).

Assumption 3 There exists a polynomial Q(T ) such that, (1) for every T ,
i, i′, t, t′, x, x′ and z, z′ with t− i = t′ − i′,

φT (Ai,t,x,z)

φT (Ai′,t′,x′,z′)
≤ Q(T ) (10)

and (2) for every T , t < T , x, z ∈ X and i < i′ < t,

φT (Ai,t,x,z)

φT (Ai′,t,x,z)
≤ Q(T ). (11)

14We do not introduce these generalizations here because they are less elegant and more
cumbersome to interpret.
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Condition (10) stipulates that within a set of hypotheses based on simi-
larities across a given time span (i.e., for which t − i = t′ − i′), the agent’s
weights of credence cannot be too different. Condition (11) stipulates that
when comparing similarities at a given period t, based on identical character-
istics but different vintages, the older information cannot be considered too
much more important than more recent information. Typically, we would
expect older information to be less important and hence this constraint will
be trivially satisfied.

4.1.2 Result

We now turn to the main result, stating that, under Assumptions (1)–(3), if
the agent has a sufficiently long string of data, then she will discard Bayesian
reasoning.15

Theorem 1 Let Assumptions 1–3 hold. Then for every α, δ > 0 there exists
T0 such that, for every T > 1

α
T0, every t ≥ αT , and every history ht,

φT (BT (ht))

φT (AT\BT (ht))
< δ.

In the most interesting case in which α and δ are taken to be quite
small, Theorem 1 states that if the horizon is sufficiently long, then the
agent will put virtually all of her weight on non-Bayesian (rather than on
Bayesian) hypotheses for all but a small fraction of initial periods. Note
that the only learning that is taking place in our process is the exclusion of
refuted hypotheses. As mentioned in Section 2, this is the counterpart of
Bayesian updating of probabilities. It is interesting that applying the logic
of Bayesian updating to all hypotheses, and thereby also to the choice of
reasoning methods, favors non-Bayesian reasoning.

Importantly, this theorem says nothing about what would be correct or
optimal learning. It does not compare the agent’s predictions to any external
standard or truth. Rather, it is a description of the evolution of the agent’s
reasoning.

15Recall that for a subset of hypotheses D ⊂ A, the symbol φ(D(ht)) is the total weight
of the hypotheses in D that are effectively used for prediction at ht. This is the weight of
the hypotheses that have not yet been refuted, and that are not tautologically true at ht.
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The Bayesian part of the agent’s beliefs converges to the truth at an
exponential rate as evidence is accumulated (that is, as t grows)—within this
class of hypotheses, the probability of the true state relative to the probability
of all unrefuted states grows exponentially with t.16 This increase of the
posterior probability of the true state does not result from any change in the
prior probability, but from the exclusion of falsified states. In other words,
the conditional probability of the true state increases at an exponential rate
because its denominator, given by the total probability of all unrefuted states,
decreases at an exponential rate. But as we now explain, this is precisely the
reason that the weight of the entire class of Bayesian hypotheses tapers off
and leaves the stage to others, such as the case-based hypotheses. The very
mechanism that makes the posterior probability of truth grow makes the
weight of Bayesian reasoning diminish.

In particular, as periods pass and data accumulate, the total weight of the
case-based hypotheses increases as compared to that of the Bayesian ones.
The key observation is that for long horizons, there are many more Bayesian
than case-based hypotheses, with the number of the former increasing expo-
nentially in T while the latter increase polynomially (in fact quadratically)
in T . In addition, as t grows (for fixed T ), the number of hypotheses that
remain unrefuted by the history ht becomes an exponentially small fraction
of the size of BT , and thus (given open-mindedness) their cumulative weight
tends to zero at an exponential rate. In contrast, the fraction of case-based
hypotheses that are unrefuted by the history ht and that make nontrivial
period-t predictions increases in t. The relative weight placed on Bayesian
hypotheses thus declines.

It follows that a similar result would hold if we were to replace the class
of case-based hypotheses with any other class of hypotheses that grows poly-
nomially in T and that provides some non-tautological prediction for each ht.
Therefore, we do not view this theorem as extolling the virtues of case-based
reasoning. Case-based reasoning is simply a familiar example of a mode of
reasoning with the requisite properties. The theorem points to general cir-
cumstances under which Bayesian reasoning will tend to wither away, for
reasons unrelated to bounded rationality or to cognitive or computational
limitations.

16As a result, there are priors consistent with Assumption 2 for which the relative prob-
ability attached to the true state, within the class of Bayesian hypotheses, gets arbitrarily
close to 1 as data accumulate.
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We can gain some insight into the potential difficulties with Bayesian
reasoning by linking the evolution of the weights attached to Bayesian and
case-based hypotheses to the structure of the hypotheses. A case-based hy-
pothesis contains (exponentially in T ) many states, each of which is by itself
a Bayesian hypothesis. As t increases, increasing numbers off these Bayesian
hypotheses will be refuted and their weight will melt away from the total
weight of Bayesian hypothesis. If the case-based hypothesis in question con-
tains the actual state, no weight will be lost. As a result, the weight com-
manded by the case-based hypothesis grows relative to that of its constituent
Bayesian hypotheses. It then seems as if the whole (the case-based hypothe-
sis) retains more weight than the sum of its parts (the Bayesian hypotheses).
The reason is that case-based hypothesis need not divide its weight among
its states. Hence, it need not say too much, and is consequently not so
vulnerable to refutation.

To illustrate this, consider our price-of-oil example, and, let us develop in-
tuition by thinking of each hypothesis as the theory proposed by a particular
expert. Let us begin fifty years back. The year is 1960 and different experts
are asked about the evolution of the price of oil over the next sixty years. A
Bayesian expert provides a hypothesis that consists of a single state. There
are many Bayesian experts, and each gets a small a priori weight. To make
the calculations transparent, assume that a total weight of (1− ε) is divided
equally among the 860 hypotheses.

We are now fifty years later, in the year 2010, we have just observed
this year’s demand and conflict indicators, and we are trying to predict the
remaining ten years. Whatever was the history h50, there are 2 × 89 states
still consistent with it. That is, the proportion of Bayesian hypotheses that
are still in the game is

2× 89

860
< 8−50.

Under a uniform distribution assumption, the total weight of these hypothe-
ses is bounded by 8−50(1 − ε). We emphasize, however, that the uniform
distribution is not essential here. Instead, as Assumption 2 demands, what
is important is that a set of hypotheses whose size diminishes exponentially
fast (in t) should also have a total weight that diminishes exponentially fast.

Thus, the vast majority of the Bayesian experts will have been proven
wrong and only a few will still be in the game, resulting in an overall low
weight for the Bayesian experts as a group (even though the expert who
happens to be right will have large relative standing within this group). In
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contrast, consider a case-based expert who says “the price of oil in year
2010 will be similar to that in year 1991.” This hypothesis is clearly not
Bayesian, as it says nothing about the years 1960, 1961,...,1990, 1992,...,2009.
Saying nothing about these years, the hypothesis is not risking being refuted
by the respective observations. Moreover, each year there are more such
unrefuted, relevant case-based hypotheses, as the number of previous years
(and hence the number of cases) grows. As a result, many more case-based
hypotheses remain unrefuted by the year 2010, causing case-based hypotheses
to dominate the agent’s reasoning.

Suppose the agent demands that experts completely specify their hy-
potheses, that is, that all be Bayesian. Hence, the non-Bayesian (case-based)
expert who predicted that the price of oil in 2010 would be similar to 1991 is
asked to divide the weight of her hypothesis among the exponentially many
states that constitute her hypothesis. This expert might reasonably reply, “I
do not have any prediction about 1960 or about 1971. All I said was that
there will be similar outcomes in 1991 and in 2010.” Insisting that the expert
further specify the hypothesis may be stretching the limit of her expertise.
And if later it is found out that her predictions for the years 1960 or 1971
were falsified, it would be wrong to penalize her original prediction, which
did not purport to say anything about these observations.

Put differently, the Bayesian approach is not flexible enough to allow the
experts to say “I do not know.” It requires that they quantify their beliefs
about all questions. Hence, the Bayesian approach does not allow us to dis-
tinguish among experts according to the accuracy of their self-assessment.
An expert who knows that she does not know certain probabilities and an
expert who wrongly believes that she does know them may end up subscrib-
ing to the same assessments.17 In contrast, other approaches allow for a
“don’t know” answer, and thus can indirectly give experts credit for know-
ing the limitations of their knowledge. A non-Bayesian expert may avoid
refutation either by making correct predictions, or by knowing when to re-
main silent. The inclusion of non-Bayesian hypotheses therefore allows the
agent to judge experts not only by their specific knowledge, but also by their
meta-knowledge, namely, the knowledge of what they know and what they

17For example, the Bayesian approach does not allow us to distinguish a prediction of
50/50 (perhaps of the probability of rain tomorrow) that is based on complete ignorance
from a prediction based on precise knowledge of the underlying process. This critique of
the Bayesian approach was explicitly stated in Ellsberg [10] and Schmeidler [39] and can
be traced back to Knight [25].
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do not know.

4.1.3 Generalizations

Section 4.1 mentioned that Assumption 2 typically does not hold if the agent
believes she observes an independent and identically distributed (iid) process,
as in the example of a sequence of Bernoulli random variables with p 6= 0.5.
On the one hand, we would have been neither surprised nor distressed if the
result of Theorem 1 failed for Bayesians who believe they face iid processes.
The message of Theorem 1 is that Bayesian reasoning will not persist unless
it is based on sufficiently precise prior information. We view the iid case as
one in which the agent believes she has quite precise prior information, in
the sense that she believes she knows the data generating process up to the
specification of a single parameter. We find the theorem of interest because
there are interesting induction problems where such precise prior information
is not available.

It turns out, however, that the conclusion of Theorem 1 continues to hold
for the case of a Bayesian who believes she faces a sequence of independent
Bernoulli random variables with p 6= 0.5. Such a process ensures that the
maximal weight attached to any single Bayesian hypothesis is shared by ex-
ponentially many such hypotheses, which implies that this weight becomes
exponentially small as T increases, and this suffices for the result. In par-
ticular, of T observations, one would expect to find roughly pT realizations
y = 1. Assuming that pT is an integer, the most likely states are those
with precisely pT realizations y = 1. However, there are

(
T
pT

)
such states, a

number that grows exponentially in T . Even though some other hypotheses
are very much less likely, the existence of exponentially many hypotheses of
comparable and relatively large weights suffices for the result.

This suggests a generalization of Assumption 2 that would suffice for our
theorem to hold: assume that there exist a polynomial P (T ) and, for every
T , a subset AT ⊂ ΩT , such that |AT | grows exponentially in T , and, for every
T and every two states ω ∈ ΩT , ω′ ∈ AT ,

φT ({ω})
φT ({ω′})

≤ P (T ).

This covers common applications of Bayesian reasoning, most notably appli-
cations to iid random variables.18

18Generalizing further, it would suffice for a somewhat weaker version of Theorem 1
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While this generalization is both straightforward and brings many fa-
miliar Bayesian problems within the purview of Theorem 1, it also raises
some critical questions. Essentially, our iid Bayesian is attempting to pre-
dict the precise sequence of observations. Why would she do this, instead
of restricting herself to predicting sufficient statistics, such as the average of
the random variables? Some care would be needed here, because a precise
prediction of the sequence of averages is equivalent to a precise prediction
of the random variables themselves. We might try to avoid this by allowing
the agent to predict only ranges of the relevant statistics, but in the cur-
rent framework this will again give rise to exponentially-many most likely
hypotheses and hence to the result of Theorem 1. The derivation of con-
ditions that guarantee the survival of Bayesian reasoning with iid random
variables is an interesting and important question. We think this question
is best pursued in a generalization of our current framework to encompass
probabilistic hypotheses (cf. Section 5.2).

4.1.4 When will Bayesianism Prevail?

Theorem 1 shows that in some circumstances, Bayesian reasoning is guaran-
teed to die out and leave the stage to others. There are also circumstances
under which Bayesian reasoning will remain useful and even dominant. To
begin with a trivial example, consider an agent who is a devout Bayesian,
satisfying

φT (BT ) = 1

for all T (and hence failing Assumption 1). Such an agent will obviously
remain Bayesian in the face of whatever evidence she gathers. However,
should the agent allow for the smallest doubt and assign a positive weight
either to a case-based or to a rule-based mode of reasoning, then the Bayesian
way of thinking will be driven out by its competitors. Interpreting the weights
as subjective probabilities regarding the theory that actually governs the
data generating process, it suffices that a very small probability is assigned
to the non-Bayesian ways of thinking, for our generalized Bayesian updating
to shrink the weight put on the Bayesian approach.

Possible violations of Assumption 2 provide more useful insights into the
realms in which Bayesian reasoning will prevail. First, Assumption 2 is ob-

that the weight attached to the most likely Bayesian hypothesis declines exponentially in
T .
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viously violated if the agent believes that she nearly knows the true state
of the world, say, if for some ωT , φT ({ωT}) = 1 − ε for all T . If, on top of
this, the agent is also correct in her focus on state ωT , then (that is, at state
ωT ) the posterior probability attached to Bayesian hypotheses will never dip
below 1 − ε. In other words, if the agent believes she knows the truth, and
happens to be right, her Bayesian beliefs will remain dominant.

A slightly less trivial example is the following. Consider, for concreteness,
only Bayesian and case-based reasoning. For simplicity, let X = {0} and
Y = {0, 1}, so that all periods have the same observable features, and they
only differ in the binary variable the agent is trying to predict. Suppose the
agent believes that she observes a cyclical process. Formally, for 1 ≤ k ≤ T ,
let ωk ∈ ΩT be defined by

ωkY (t) =

{
0 2mk ≤ t < (2m+ 1)k m = 0, 1, 2, ...
1 (2m+ 1)k ≤ t < (2m+ 2)k m = 0, 1, 2, ...

.

Thus, for k = 1 the process is 01010101..., for k = 2 it is 001100110011... and
so forth.

Let the agent’s beliefs satisfy

φT ({ωk}) =
1− ε

2k

and
φT ({ω}) = 0

for every ω /∈
{
ωk |1 ≤ k ≤ T

}
. Thus, the agent splits all the weight of the

Bayesian hypotheses among the k hypotheses
{
ωk
}

and leaves no weight to
the other Bayesian beliefs.19 The remaining weight, ε̂ = ε + 1−ε

2T , is split
equally among the case-based hypotheses.

Next suppose that the agent is right in her belief that the process is
cyclical (starting with a sequence of 0’s). Thus, the data generating process
chooses one of the states ωk. At this state, once we get to period t = k,
all the Bayesian hypotheses

{
ωk

′}
for k′ 6= k are refuted. In contrast, the

hypothesis
{
ωk
}

is not refuted at any t. Consequently, at ωk, for every t ≥ k,
the total weight of the Bayesian hypotheses remains 1−ε

2k . In contrast, the

19Observe that these Bayesian beliefs can also be described as rule-based beliefs. We
suspect that this is not a coincidence. When Bayesian beliefs violate Assumption 2, it is
likely to be the case that they reflect some knowledge about the data generating process,
which can also be viewed as believing in a class of rules.
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total weight of the case-based hypotheses can never exceed ε̂, resulting in
the Bayesian mode of reasoning remaining the dominant one (for small ε and
large T ). Clearly, this will only be true at the states

{
ωk
}

. At other states
the converse result holds, because all Bayesian hypotheses will be refuted
and case-based reasoning will be the only remaining mode of reasoning.

Two main assumptions are thus needed for the success of the Bayesian
approach. First, the agent has to believe that some states are very much more
likely than others.20 Second, she has to be right. If the agent knows the data
generating process up to certain parameters (such as the cycle length, k,
in the last example), then Bayesian beliefs allow learning and need not be
driven out by other forms of reasoning. In these circumstances, especially if
the parameters can assume only finitely many values or belong to a compact
space, it makes sense to think of the agent’s prior beliefs as being specified
over the set of parameters (rather than over the state space ΩT ) and to update
that prior as observations are gathered. This type of Bayesian reasoning is
successful because the set of parameters does not increase with the number
of observations, even though the set of states does. Put differently, the agent
is not learning the state space ΩT , which grows with T , but the parameter
space, which is fixed. The Bayesian approach will then be quite successful.

In contrast, assume that the agent observes a process about which nothing
is known a priori. She may be interested in the price of oil, the rise and fall
of economic powers, or the eruption of wars. In these cases there is no claim
that the data generating process is known up to a finite set of parameters,
and hence the agent has to form her beliefs over the entire state space rather
than over a parameter space. Moreover, the size of the state space increases
at an exponential rate with the horizon T . It then seems a priori harder to
learn the process. Correspondingly, we find Assumption 2 rather natural for
such examples. In fact, one can argue that it is irrational to violate it, as
such a violation suggests that the agent believes she knows about the process
more than she actually does.

4.2 Case-Based vs. Rule-Based Reasoning

We devote this subsection to another application of the framework, dealing
with the dynamics of case-based versus rule-based reasoning. We provide

20Notice that Assumption 2 already allows large differences in the prior probabilities
attached to various states, and Bayesian reasoning can survive only if the agent is yet
more convinced of the differences between various states.
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a simple example that shows how the relative weights of these modes of
reasoning change endogenously.

Assume for convenience that there are no predicting variables, or equiv-
alently, that the value of x is constant: |X| = 1. Let Y = {0, 1} and assume
that yt are iid, where yt = 1 with probability p.

Consider the set of rules,

RBT = {Ri,y | i < T, y ∈ Y } ,

where
Ri,y = {ω ∈ Ω |ωY (t) = y ∀t ≥ i}

for i ≥ 0 and y ∈ Y . Hence, each rule is identified by a given period i
and outcome y, and predicts that from period i on, only outcome y will be
observed. There are 2T hypotheses in RBT .

Because there are no x values to consider, the case-based hypotheses are
simply

Ai,t = {ω ∈ Ω |ωY (i) = ωY (t)} ,

and the set of all case-based hypotheses is

CBT = {Ai,t | i < t ≤ T } ,

containing T (T − 1)/2 hypotheses.
Assume that, for 0 < c < 1

φT (CBT ) = c

φT (RBT ) = 1− c,

and, for simplicity, that the weights within each class of hypotheses are uni-
formly distributed. Thus, for i ≥ 0 and y ∈ {0, 1},

φT (Ri,y) =
1− c
2T

,

and for i < t ≤ T ,

φT (Ai,t) =
2c

T (T − 1)
.

Next, let us consider histories ht ending with k (0 ≤ k ≤ t) 1’s, that is,
yi = 1 for t−k ≤ i < t, but yt−k−1 = 0 (or k = t) . For each t−k ≤ i ≤ t, the
rule Ri,1 is unrefuted and non-tautological at ht and predicts yt = 1. There
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is one more rule that is unrefuted and non-tautological at ht, and this is Rt,0,

which predicts 0. Overall the rule-based prediction contributes (k+1)(1−c)
2T

to
the prediction 1, and 1−c

2T
to the prediction 0. The case-based prediction splits

the weight 2tc
T (T−1)

between 0 and 1 proportionally to the average

ȳt−1 =
1

t

t−1∑
i=0

yi.

Assume that T is large. For small values of t, the overall weight of the
case-based prediction is O(T−2) and it therefore does not significantly change
the rule-based prediction. Thus, even if k is small, the agent will predict
yt = 1. This phenomenon means that the agent is a little too quick to find
trends in the data. A few observations of the value 1 suffice for her to theorize
that “from now on, we’ll observe only 1.” We may view this phenomenon as
a type of overfitting: the agent’s function φ assigns a high weight to a theory
that matches the data perfectly, even though this theory only deals with the
most recent observations.

Next consider large values of t, say, t = αT for α ∈ (0, 1). The total
weight of the case-based hypotheses is now

φT (CBT (ht)) =
2tc

T (T − 1)
=

2αc

(T − 1)
,

and it is of the same order of magnitude as the total weight of the rule-based
predictions,

φT (RBT (ht)) =
(k + 2)(1− c)

2T
.

The ratio of the two is

φT (CBT (ht))

φT (RBT (ht))
=

2αc
(T−1)

(k+2)(1−c)
2T

= 4α× T

T − 1
× c

1− c
× 1

k + 2
.

It follows that for low values of c, reflecting a tendency to theorize, the
agent will tend to over-generalize and find patterns even in data that are in
fact random. In contrast, high values of c, associated with a tendency to
rely on experience, will reduce the chance of overfitting the data and over-
generalizing trends, at the cost of ignoring trends when they actually exist.

Intermediate values of c would result in rule-based reasoning being dom-
inant for large k (relative to c and α), and case-based reasoning taking over
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when k is small. In other words, when recent history is suggestive of a
simple rule (a large number of observations of 0 or of 1), the agent adopts
the rule “recent observations will continue forever.” When recent history is
more spotty, and no simple rule explains it, the agent assigns less weight to
rule-based reasoning and resorts to case-based reasoning, which in this case
means reliance on past frequencies. Since, for every k, there is a positive
probability to observe a run of k 0’s or k 1’s, for a large T we should expect
to find periods in which history suggests rules, followed by periods in which
no rule seems to explain the data. Therefore, it should be expected that from
time to time there will emerge a theory that is accepted by most agents, and
at some point it will collapse. When it does collapse, confusion may lead
agents to adopt less theoretical, more case-based methods, until the data
seem to suggest a new theory, and so forth. In other words, even if the data
are completely random, it should be expected that theories would rise and
fall every so often, with case-based reasoning being more prominent between
regimes of different theories.

Observe that the balance of weights between the two modes of reasoning is
driven by the success of rule-based reasoning. This reflects the intuition that
people would like to understand the process they observe, and that such “un-
derstanding” means a simple, concise theory that explains the data. If such
a theory exists, agents will tend to prefer it over case-based reasoning. But
when all simple theories are refuted, agents will resort to case-based reason-
ing. Theories or rules are exciting when they succeed, but, being ambitious,
they can also fail. Cases, by contrast, are no more than an amalgamation of
data, and thus they do not provide any deep insights or a sensation of “un-
derstanding.”On the bright side, they can never be refuted. They are always
there, waiting faithfully for the agent, who would devote more attention to
them when her heroic attempts to understand the process fail.

5 Discussion

5.1 Methods for Generating Hypotheses

In many examples ranging from scientific to everyday reasoning, it may be
more realistic to put weight φ not on specific hypotheses A, but on methods
or algorithms that generate them. For example, linear regression is one such
method. When deciding how much faith to put in the prediction generated
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by the OLS method, it seems more plausible that agents put weight on
“whatever the OLS method prediction came out to be” rather than on a
specific equation such as “yt = 0.3 + 5.47xt.”

One simple way to capture such reasoning is to allow the carriers of weight
of credence, that is, the argument of φ, to be sets of hypotheses, with the
understanding that within each set a most successful hypothesis is selected for
prediction, and that the degree of success of the set is judged by the accuracy
of this most successful hypothesis. The following example illustrates.

Suppose that the agent is faced with a sequence of datasets. In each
dataset there are many consecutive observations, indicating whether a comet
has appeared (1) or not (0). Different datasets refer to potentially different
comets.

Now assume that the agent considers the general notion that comets
appear in a cyclical fashion. That is, each dataset would look like

0, 0, ..., 0, 1, 0, 0, ..., 0, 1, ...

where a single 1 appears after k 0’s precisely. However, k may vary from
one dataset to the next. In this case, the general notion or “paradigm” that
comets have a cyclical behavior can be modeled by a set of hypotheses—
all hypotheses that predict cycles, parametrized by k. If many comets have
been observed to appear according to a cycle, the general method, suggesting
“find the best cyclical theory that explains the observations” will gain much
support, and will likely be used in the future. Observe that the method may
gain credence even though the particular hypotheses it generates differ from
one dataset to the next.

5.2 Probabilistic Hypotheses

An important next step is to extend this framework to probabilistic hy-
potheses. Hypotheses would then be represented by probability distribu-
tions rather than by sets of states. The Bayesian hypotheses in such an
extension are straightforward, and consist of probability distributions over
states. Each such distribution f has an a priori weight φ({f}). If the support
of φ is contained within the set of Bayesian hypotheses, then φ is simply the
Bayesian prior. Given a history ht, the hypothesis f is no longer classified
dichotomously into “consistent with ht” or “inconsistent with ht.” Rather,
it is continuously ranked in [0, 1] according to the probability of history ht
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given theory f , that is, according to the theory’s likelihood function at ht.
Multiplying the likelihood function by the a-priori weight φ({f}) leads to a
natural measure of the belief in theory f following history ht. Indeed, this
is, up to renormalization, precisely the result of a Bayesian update over the
Bayesian hypotheses.

The specification of non-Bayesian hypotheses is less clear. Should these
be formulated as sets of distributions over states, or as distributions over
sets of states, some combination of these generalizations, or something else?
Finding such an appropriate generalization is a topic for further research.

5.3 Single-Hypothesis Predictions

This paper is concerned with reasoning that takes many hypotheses into
account and aggregates their predictions. Alternatively, we may consider
reasoning modes that focus on a most preferred hypothesis (among the unre-
futed ones) and make predictions based on it alone. For example, if we select
the simplest theory that is consistent with the data, we obtain Wittgenstein’s
[43] definition of induction.21 If, by contrast, we apply this method to case-
based hypotheses, we end up with nearest-neighbor approaches (see Cover
and Hart [6] and Fix and Hodges [11, 12]) rather than with the case-based
aggregation discussed here.

5.4 Decision Theory

The present paper deals with prediction. In order to explore its implications
to decision making, the framework needs to incorporate acts and payoffs,
and to specify the interaction between the agent’s choices and the underlying
process.

One simple possibility is to assume that the agent makes one choice of
an act (or a strategy) at the outset, then history unfolds, nature determines
the state of the world, and the agent’s utility is determined by the resulting
outcome. In this case, each act f associates outcomes with states ω as in a
standard Savage model.

21See Solomonoff [42], who suggested to couple this preference for simplicty with Kol-
mogorov complexity measure to yield a theory of philosophy of science. Gilboa and
Samuelson [15] discuss the optimal selection of the preference relation over theories in
this context.
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Because a model φ assigns non-negative weights to subsets of a state
space, Ω, it defines a totally monotone capacity:

v(A) =
∑
B⊂A

φ(B).

It is therefore natural to define the agent’s preferences by the Choquet inte-
gral (Choquet [5]) of her utility, as axiomatized by Schmeidler [39]. Observe
that the non-additivity of the capacity results from the fact that a weight
given to a certain hypothesis cannot always be divided among the individual
states in it. When combined with the Choquet integral, this partial informa-
tion results in ambiguity-averse behavior.

An additional source of ambiguity may be the model φ. While we as-
sumed that the agent has a single such model, it may be more realistic to
allow a certain degree of model uncertainty. In this case, one may consider a
set of models, Φ. Decisions may then be taken in ways that are analogous to
the multiple priors decision theories, such as maxmin expected utility (Gilboa
and Schmeidler [16]), variational preferences (Maccheroni, Marinacci, Rusti-
chini [29]), smooth preferences (Klibanoff, Marinacci, and Mukerji [24]), and
so forth. Such a model can capture two types of learning: the generalized
Bayesian learning that consists of excluding refuted hypotheses, as well as the
learning that consists of shrinking the set Φ, inspired by classical statistics
methods.

6 Appendix: Proof of Theorem 1

Let there be given α, δ > 0. We need to show that there exists T0 such that,
for every T > 1

α
T0, every t ≥ αT , and every history ht,

φT (BT (ht))

φT (CBT (ht))
< δ.

We first bound the numerator from above, using Assumption 2. Then we
bound the denominator from below, using Assumption 3.

We start by showing that, because the ratio of weights assigned to specific
states (hypotheses in BT ) is bounded by a polynomial, the weight of each
particular state is bounded by the polynomial divided by an exponential
function of T .

31



Consider a state ω. If φT ({ω}) > η, then, since for every A,B ∈ BT ,
φT (A) ≤ P (T )φT (B), for every ω′,

φT ({ω′}) ≥ φT ({ω})
P (T )

>
η

P (T )

Observe that |Ω| = dT for d = |X||Y | > 1. Hence

φT (BT ) >
dTη

P (T )

and φT (BT ) < 1 implies

η <
P (T )

dT

Since this is true for every η such that η < φT ({ω}), we conclude that

φT ({ω}) ≤ P (T )

dT
.

Finally, recall that ω was arbitrary, hence this inequality holds for every ω.
Next, we wish to show that the weight of all the states that are consistent

with a given history ht has to be relatively small. Observe that the number of
states that are consistent with ht is exponential in (T − t). Indeed, if t were
fixed, their total weight need not converge to zero. However, we assume that
t is at least a fixed proportion, α, of T . This implies that the total weight of
all states consistent with ht decreases exponentially with T . Specifically, for
every ht,

|BT (ht)| =
dT−t

|X|
≤ dT−t

and it follows that

φT (BT (ht)) ≤ dT−t
P (T )

dT
=
P (T )

dt

and since t ≥ αT ,

φT (BT (ht)) ≤
P (T )

dαT
=
P (T )

(dα)T
(13)

where α > 0 and thus dα > 1.
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We now turn to discuss the weight of the case-based hypotheses. We
wish to show that this weight cannot be too small. Consider a hypothesis
A(t−1),t,x,z ∈ CBT and assume that φT

(
A(t−1),t,x,z

)
< ξ. By (10) (of Assump-

tion 3) we have that, for all t′, x′, z′

φT
(
A(t′−1),t′,x′,z′

)
< ξQ(T ).

By (11) (of that Assumption), we know that for all i < t′ < T , and all x′, z′,

φT (Ai,t′,x′,z′) < φT
(
A(t′−1),t′,x′,z′

)
Q(T ) < ξ [Q(T )]2 .

As the overall number of case-based hypotheses is |X|2
(
T
2

)
, we obtain

the bound

φT (CBT ) < ξ [Q(T )]2 |X|2
(
T
2

)
.

Define

R(T ) = [Q(T )]2 |X|2
(
T
2

)
and observe that it is a polynomial in T .

Thus, we have

ξ >
φT (CBT )

R(T )
.

Since this holds for any ξ such that ξ > φT
(
A(t−1),t,x,z

)
, it has to be the case

that

φT
(
A(t−1),t,x,z

)
≥ φT (CBT )

R(T )

and φT (CBT ) > ε implies

φT
(
A(t−1),t,x,z

)
≥ φT (CBT )

R(T )
>

ε

R(T )
.

We observe that at ht there are precisely t case-based hypotheses that
are unrefuted and non-tautological, and among them there is one of the type
A(t−1)t,x,z (that is, the one defined by x = ωX(t − 1) and z = ωX(t)). It
follows that

φT (CBT (ht)) ≥ φT
(
A(t−1),t,x,z

)
>

ε

R(T )
. (14)
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Since (13) yields

φT (BT (ht)) ≤
P (T )

(dα)T

and (14) yields
1

φT (CBT (ht))
<
R(T )

ε
,

we can conclude that

φT (BT (ht))

φT (CBT (ht))
<
P (T )R(T )

ε (dα)T
.

As P (T ) and R(T ) are polynomials in T and the denominator is an expo-
nential function in T with base dα > 1, for a large enough T0 and hence T ,
this ratio will be below the specified δ.
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