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1 Introduction

In this paper, we investigate mechanism design when the players can withdraw from the mech-

anism ex-post, after learning the allocation assigned to them. In technical terms, we study

mechanisms with ex-post individual rationality. Such mechanisms have intuitive appeal. In-

deed, it is plausible that a player has to decide what to report to the mechanism (e.g. which

bid to submit or what goods to order) without knowing much about the other players (e.g.

competitors). Yet, she can withdraw from the mechanism ex-post, after the mechanism an-

nounces the allocation. This descriptions fits a number of situations. For example, workers

have an option to resign or retire from their employment, rather than to continue in a job that

is not beneficial. A limited liability corporation has an option to declare bankruptcy, which

becomes attractive if the market turns against it, e.g., the value of the corporation’s invest-

ments decreases significantly. Examples of such strategic bankruptcy abound. In particular, a

number of firms who have apparently overbid in wireless spectrum auctions in the U.S. have

declared bankruptcy to avoid large payments for the spectrum. Recent financial crisis in the

U.S. shows that a significant number of homeowners are willing to abandon their houses when

their mortgage indebtedness exceeds the value of the house. Other examples of environments

where ex-post individual rationality is relevant include various trading situations, especially

with opt-out options (such options are legally required in several countries and industries), and

also in internet auction environments, since payments are made after winning an auction over

the internet.

Despite its apparent relevance, mechanism design with ex-post individual rationality has

not been sufficiently explored in the literature, especially in multiperson situations. (In some

single-agent situations, such as principal-agent model with adverse selection, the notions of in-

terim and ex-post individual rationality coincide.) Kosmopoulou (1999) establishes an equiva-

lence between efficient implementation in ex-post individually rational, ex ante budget balanced

dominant strategy mechanism and efficient implementation in Bayesian ex-post budget bal-

anced mechanisms with interim individual rationality, under independent type distribution. In

contrast, we focus on Bayesian mechanisms with ex-post individual rationality, which have not

been studied in the literature, and allow non-independent type distributions.

2



In this paper we do not restrict the environment under consideration in any way, except

for the quasi-linearity of the players’ utility functions with respect to money. We allow for

arbitrary decision rules which generate nonnegative expected social surplus. Our goal is to

characterize the conditions under which a decision rule can be implemented via a Bayesian

mechanism with ex-post individual rationality and (ex-ante) budget balance.

The implementability conditions for our problem turn out to have both similarities and

also significant differences with the implementability conditions under interim incentive and

individual rationality constraints with budget balance. In the latter framework, sufficient

expected surplus is necessary when the types are distributed independently (Makowski and

Mezzetti 1994) and this amount of surplus does not depend on the type distribution and is

determined by the structure of the incentive problem. However, with non-independent type

distribution, availability of surplus is not required, as all social decision rules generating a

positive expected social surplus are implementable if the joint type distribution satisfies generic

identifiability condition (Severinov and Kosenok 2008).

In our ex-post problem, a sufficient amount of expected surplus is needed even with non-

independent type distributions. However, the necessary amount of expected surplus does

depend on the joint type distribution, since the sum of expected informational rents of the

agents -which has to be covered by the surplus - is sensitive to the type distribution.

In the first step in our analysis, we establish an important dichotomization property of

Bayesian implementation with ex-post individual rationality and ex-ante budget balance. Pre-

cisely, a decision rule can be implemented in such mechanism if and only if the expected social

surplus generated by the decision rule exceeds the expected sum of the surpluses that the

mechanism designer needs to pay to the individual players to guarantee truth-telling. Clearly,

this is the weakest possible condition. For, with budget balance, it is impossible to provide

more surplus to the players than the mechanism generates. Thus, one of the contributions

of the paper is to establish that the conditions required for budget-balanced implementation

under ex-post individual rationality are the minimal possible one in this environment.

Although computing the expected social surplus in the mechanism is an easy task, deter-

mining the value of the surpluses (informational rents ensuring incentive compatibility) is more
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challenging. We provide a significant simplification here by establishing that the expected in-

formational rent of each individual player can be computed by finding the “best” deviation

for this player and determining the associated profits that she can get from this deviation. In

other words, a player’s best deviation combines in itself all other profitable deviations. So,

by allocating sufficient surplus to prevent this deviation the mechanism designer prevents the

player from engaging in any other deviation and ensures truth-telling. Thus, the task of com-

puting the informational rents earned by a player boils down to finding her best deviation.

However, this is sufficiently complex since the best deviation for a particular type of a player

depends on the allocation of the informational rents of its other types, which in turn, depend

on the best deviations of those other types.

For computing the best deviation and the expected informational rent associated with it,

the main tasks is to allocate the informational rents (surpluses) across player types in a way

that minimizes the incentives of the other types to imitate the type receiving the surplus.

This is essential for minimizing the expected informational rents that the mechanism designer

needs to pay. This problem has a simple solution when only one type wishes to imitate the type

getting an informational rent. In this case, the latter should be paid in the “state of the world”

with the highest likelihood ratio i.e., when the ratio of the probabilities of the announced type

profile of the other players conditional on the imitated type and on the imitator type reaches its

maximal value. When two types want to imitate each other, giving information rent to one type

will increase the information rent given to the other type; thus, it will increase the information

rent to the former one even further. This vicious cycle may leads to infinite information rent.

However, we show that the information rent is finite if and only if the highest likelihood ratios

are different for the two types: the product of the two likelihood ratios is larger than unity, and

it plays the role of a discount factor to make the infinite accumulation of information rent a

finite value. In general, if there a cycle in which each type wants to imitate its neighborhood in

one direction, the information rent is finite if and only if at least two of the highest likelihood

ratios are different.

The problem is more complex when two or more types wish to imitate another type. Still,

the basic intuition of paying the informational rents to each type in the “state of the world”
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with the highest likelihood ratio, appropriately defined, survives. The appropriate definition

of the likelihood ratio in this case is a linear combination of individual likelihood ratios of the

other players type profile conditional on the imitated type and each of its imitator types. In

the paper, we develop a fairly simple and tractable algorithm for solving this problem. We then

demonstrate how our method works by characterizing the set of implementable allocations in

some special, yet common, cases.

Thus, our paper shows that the optimal mechanism and implementability conditions under

ex-post individual rationality remain sensitive to the joint probability distribution from which

the players’ types are drawn. This feature of the optimal mechanisms, originally established by

Crémer and McLean (1985) and (1988) for Bayesian mechanisms, had been subject to scrutiny

in the literature from the point of view of the robustness of the mechanisms and their sensitivity

to the players’ beliefs. Yet, it is worth noting that our mechanisms utilize the players beliefs

in a particular fashion, via likelihood ratio: the designer needs to know which profile of the

other players types is seen as more likely by a particular type relative (in ratio to) the beliefs

of the other types of this player. Likelihood ratio techniques are intuitive and commonly used

in the principal-agency theory and in econometrics. There are simple methods to identify

and discover them by asking the players to engage in simple bets. Furthermore, requiring the

knowledge of how the likelihood ratio of a state of the world varies with type of a player does

not appear to be any more stringent than requiring the knowledge of a player’s utility function

and its dependence on her type.

The rest of the paper is organized as follows. In section 2, we develop the model. In section

3, we present the main analytical results. In section 4 we discuss a computational algorithm.

In section 5 we derive the solution in some special cases. Section 6 concludes. All proofs are

relegated to an Appendix.

2 The Model

We consider an economy with n players, N = {1, 2, . . . , n}. Player i ∈ N has privately known

type drawn from the type space Θi ≡ {θ1
i , ..., θ

mi
i } of cardinality mi, 2 ≤ mi <∞. The set of

type profiles is given by Θ ≡
∏
i=1,...,n Θi, with cardinality L ≡

∏
i=1,...,nmi. A state of the
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world is equivalent to the realized type profile. When focussing on player i, we will use the

notation (θi, θ−i) to denote a profile of types where θ−i is the profile of types of players other

than i. Let Θ−i =
∏
l 6=i Θl, L−i =

∏
l 6=iml, Θ−i−j =

∏
l 6∈{i,j}Θl, and L−i−j =

∏
l 6∈{i,j}ml. A

generic element of Θ−i−j is denoted by θ−i−j .

The probability distribution from which the players’ type profile θ is drawn is denoted by

p(θ), with pi(θi) and pi,j(θi, θj) denoting the corresponding marginal probability distribution of

agent i’s type and the marginal probability distribution of types of players i and j, respectively.

We assume that p(θ) is common knowledge. We also assume that pi,j(θi, θj) > 0 for any

θi ∈ Θi, θj ∈ Θj of any two agents i and j. Further, let p−i(θ−i|θi) denote the probability

distribution of type profiles of players other than i conditional on the type of agent i. We use

a similar system of notation for other probability distributions over Θ that we use below. The

set of all probability distributions over Θ is denoted by P(Θ).

A mechanism designer does not have any private information. She chooses a public decision

x from the feasible set X and allocates transfers to and from players. Player i’s utility function

is given by ui(x, θ) + ti where ti is a transfer that i receives from the mechanism. Without

loss of generality, a player’s reservation utility is normalized to zero.1 A (social) decision

rule x(·) is a function mapping the type space Θ into the set of public decisions X.2 Also,

t(·) = (t1(·), ..., tn(·)) is a collection of transfer functions to all agents, where ti(·) : Θ 7→ R is a

transfer function to agent i. An allocation profile is a combination of a decision rule x(·) with

a collection of transfer functions t(·).

By the Revelation Principle, we can restrict the analysis to direct mechanisms in which

the mechanism designer offers an allocation profile to the agents. If the agents, informed of

their types, decide to participate in this mechanism, they report their types to the mechanism

designer, and the allocation corresponding to the reported type profile is implemented.

Our main goal is to provide necessary and sufficient conditions for the existence of ex-
1Suppose that agent i’s utility from her outside option is equal to wi(θi, θ−i). Such environment is equivalent

to the environment where i’s utility function is given by ui(x, θ)−wi(θ)+ti and her outside option is 0. Note that

the sets of ex-post efficient decision rules and the notions of social surplus are the same in both environments.
2Note that randomization in public decisions is implicitly allowed, since X can be regarded as a set of

probability distributions over some set of “pure” outcomes.
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post individually rational and ex-ante budget-balanced Bayesian mechanisms implementing

desirable decision rules. Let us describe these properties formally.

First, decision rule (x(·), t(·)) is incentive compatible if the following Interim Incentive

Constraint ICi(θi, θ′i) holds for all i ∈ {1, ..., n} and θi, θ
′
i ∈ Θi:∑

θ−i

[
ui(x(θ−i, θi), (θ−i, θi))+ti(θ−i, θi)−ui(x(θ−i, θ′i), (θ−i, θi))−ti(θ−i, θ′i)

]
p−i(θ−i|θi) ≥ 0. (1)

A decision rule x(·) is said to be implementable if there exists a profile of transfer functions

t(·) such that (x(·), t(·)) is incentive compatible.

Ex-post Individual Rationality (EPIR) requires the following constraint to hold for all i ∈

{1, ..., n} and θ ∈ Θ:

ui(x(θ), θ) + ti(θ) ≥ 0. (2)

Ex-ante Budget Balancing (EABB) constraint can be written as follows:

∑
θ∈Θ

n∑
i=1

ti(θ)p(θ) = 0. (3)

A decision rule x(·) is ex-post efficient if x(θ) ∈ arg maxx∈X
∑n

i=1 ui(x, θ) for all θ ∈ Θ, i.e.

x(θ) maximizes ex-post social surplus
∑n

i=1 ui(x, θ). Since the principal always has an option

to disband the mechanism and cause the agents to take their outside options, we assume

without loss of generality that maxx∈X
∑n

i=1 ui(x, θ) ≥ 0 for all θ ∈ Θ. Finally, EPIR and

EABB together imply the following Ex-Ante Social Rationality (EASR) condition:

S ≡
∑
θ∈Θ

n∑
i=1

ui(x(θ), θ)p(θ) ≥ 0. (4)

EASR simply says that a decision rule must generate a nonnegative (ex ante) expected sur-

plus. Clearly, this is a very weak requirement. It is satisfied by a large variety of decision

rules, including the ex-post efficient ones. Having established EASR as a necessary condition,

in the next section we characterize necessary and sufficient conditions for EPIR and EABB

implementation of EASR decision rules which include ex-post efficient ones.
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3 Analysis

Under truth-telling agent i gets net utility

Ui(θ) = ui(x, θ) + ti(θ). (5)

Since for given decision rule x(·), the net surplus Ui(θ) uniquely determines the transfer ti(θ),

and vice versa, we can use Ui(·) and ti(·) interchangeably. In particular, rewriting (1), (2) and

(3), we can state:

Definition 1 A decision rule x(·) is implementable via an ex-post individually rational, ex-

ante budget balanced Bayesian mechanism if there exists a profile {Ui(θ)}i=1,...,n, θi∈Θi s.t. for

all i = 1, ..., n, θi, θ′i ∈ Θi and θ ∈ Θ, the following conditions hold:

ICi(θi, θ′i) :
∑

θ−i∈Θ−i

p−i(θ−i|θi)
{
Ui(θ−i, θi)− Ui(θ−i, θ′i)

}
≥

∑
θ−i∈Θ−i

{
ui(x(θ−i, θ′i), (θ−i, θi))− ui(x(θ−i, θ′i), (θ−i, θ

′
i))
}
p−i(θ−i|θi), (6)

EPIRi(θ) : Ui(θ) ≥ 0, (7)

EABB :
∑
θ∈Θ

n∑
i=1

Ui(θ)p(θ) =
∑
θ∈Θ

n∑
i=1

ui(x(θ), θ)p(θ) = S. (8)

Next, consider the following problem of minimizing agent i’s ax-ante expected surplus.

Vi = min
{Ui(θ)≥0:θ∈Θ}

∑
θ∈Θ

Ui(θ)p(θ) s.t. (6) holds for all θi, θ
′
i ∈ Θi (9)

The solution to problem (9) subject to (6) determines the minimal ex-ante surplus Vi necessary

to ensure truth-telling by agent i and her voluntary participation in the mechanism. Specifi-

cally, if the constraint set of this problem is compatible i.e., there is a profile {Ui(θ)}θ∈Θ s.t.

all inequalities in (7) and (6) hold, then there exists a solution {U∗i (θ)}θ∈Θ to Problem (9):

Vi =
∑
θ∈Θ

U∗i (θ)p(θ) <∞. (10)

By construction, Vi ≥ 0.
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If the constraint set is empty, i.e. there is no {Ui(θ)}θ∈Θ satisfying (6) and (7), then we

take the value of the problem (9) to be infinite i.e., Vi = +∞.

Next, we establish the following important result:

Proposition 1 Decision rule x(·) is implementable via an ex-post individually rational, ex-

ante budget balanced Bayesian mechanism if and only if the solution to (9) for all i induces

such V1, ..., Vn via (10) that
n∑
i=1

Vi ≤ S. (11)

Proposition 1 establishes an important decomposition property: it is sufficient to consider

each agent’s problem separately. This result will allow us to find minimal informational rents

required for implementability. If social surplus is sufficient to cover the sum of agents’ individual

rents, then a mechanism exists. From the proof of Proposition 1, it can be seen that the excess

of social surplus over the sum of required informational rents can be split among the agents in

an arbitrary way.

3.1 Strategies and Informational Rent

In this section, we will first consider strategies chosen by the agents in a direct mechanism. Let

us start by introducing some additional notation. Agent i’s strategy si in a direct mechanism

is a vector of size m2
i such that its entry si(θi, θ′i) denotes the probability with which agent i

of type θi reports type θ′i. Note that si(θi, θ′i) ∈ [0, 1] and
∑

θ′i∈Θi
si(θi, θ′i) = 1 for all θi ∈ Θi.

Let Si be the set of all such strategies. A truthful strategy s∗i of agent i satisfies si(θi, θi) = 1

and si(θi, θ′i) = 0 for all θi, θ′i ∈ Θi, θi 6= θ′i. A strategy profile s ≡ (s1, ..., sn) is a collection of

strategies followed by all agents. A strategy profile such that agent i follows strategy si and

all other agents follow truthful strategies is denoted by (si, s∗−i).

Definition 2 Say that the strategy profile s ≡ (s1, ..., sn) induces the probability distribution

over the reported type profiles q(.|s) if type profile θ′ ∈ Θ is reported with probability q(θ′|s)

when the agents follow strategies s = (s1, ..., sn) and the types are drawn from the prior p(·).
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To compute q(.|s), note that

q(θ′1, ..., θ
′
n|s) =

∑
(θ1,...,θn)∈Θ

(
p(θ1, ..., θn)

n∏
i=1

si(θi, θ′i)
)

for any (θ′1, ..., θ
′
n) ∈ Θ.

Also, let

gi(si) ≡
∑

θi,θ′i∈Θi

∑
θ−i∈Θ−i

[ui(x(θ−i, θ′i), (θ−i, θi))−ui(x(θ−i, θ′i), (θ−i, θ
′
i))]si(θi, θ

′
i)p(θ−i, θi). (12)

With this notation, incentive constraints (6) can be rewritten as follows∑
θ∈Θ

(p(θ)− q(θ|si, s∗−i))Ui(θ) ≥ gi(si) for any θi ∈ Θi and si ∈ Si. (13)

The constraints (13) can be interpreted as follows. The right-hand side of (13) is the expected

gain that agent i gets from a better allocation x(·) when he follows strategy si rather than

reports truthfully. The left-hand side of (13) reflects expected loss of surplus for agent i when

he follows strategy si, instead of reporting her true type.

It will be useful to consider the following problem. Suppose that agent i can follow only

one deviation strategy si ∈ Si. Let us consider how the principal can prevent her from this

deviation. The corresponding problem and its dual are stated below.

Vi(si) = min
Ui(θ)≥0

∑
θ

Ui(θ)p(θ) s.t.
∑
θ

(p(θ)− q(θ|si))Ui(θ) ≥ gi(si), [LPP (si)]

Vi(si) = max
αi(si)≥0

gi(si)αi(si) s.t. αi(si)[p(θ)− q(θ|si)] ≤ p(θ) [LPD(si)]

with simplifying notation of q(·|si) := q(·|si, s∗−i).

The solution to LPP (si) and LPD(si) is characterized in the following Proposition:

Proposition 2 If q(.|si) 6= p(·), then the solution to problems LPP (si) and LPD(si), Vi(si),

is given by:

Vi(si) =
gi(si)

1−min
θ∈Θ
{q(θ|si, s∗−i))/p(θ)}

. (14)

If q(.|si) = p(·), then Vi(si) =∞ if gi(si) > 0 and Vi(si) = 0 if gi(si) ≤ 0.

To understand Proposition 2, consider the dual problem LPD(si). First, suppose that

q(.|si) 6= p(·). Then, since q(·|si) and p(·) are probability distributions, i.e.
∑

θ p(θ) =
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∑
θ q(θ|si) = 1, we must have q(θ|si) < p(θ) for some θ ∈ Θ. The solution to LPD(si) in-

volves setting αi(si) at the maximum i.e., α(si) = 1

1−minθ̃∈Θ
q(θ̃|si)
p(θ̃)

. However, if q(.|si) = p(·),

then Vi(si) =∞ if gi(si) < 0 and Vi(si) = 0 if gi(si) ≤ 0.

Intuitively, the solution to LPP (si) can be explained as follows. Suppose that, in order

to prevent the agent from using the deviation strategy si, the mechanism designer provides

ex-ante surplus Vi(si) to player i by making a transfer to her in the state of the world θ. Then

the corresponding payment to i in the state of the world θ will be equal to Vi(si)
p(θ) . If player i uses

strategy si, her ex-ante expected payment loss will be equal to Vi(si)(p(θ)− q(θ|si, s∗−i))/p(θ).

Hence, deviation si would not be profitable if Vi(si)(p(θ)− q(θ|si, s∗−i))/p(θ) ≥ gi(si). Clearly,

the mechanism designer can minimize Vi(si) by choosing to pay the agent in the state of the

world θ where (p(θ)− q(θ|si, s∗−i))/p(θ) is maximal. The latter observation implies (14). Also,

it is clear from LPD(si) that Vi(si) = ∞, if q(.|si) = p(·) and gi(si) > 0 and Vi(si) = 0, if

q(.|si) = p(·) and gi(si) ≤ 0.

Next, let us consider the ex ante expected informational rent Vi necessary to induce truth-

telling by agent i. The original problem and its dual are summarized as follows.

Vi = min
Ui(θ)≥0

∑
θ

Ui(θ)p(θ) s.t.
∑
θ−i

p(θi, θ−i)[Ui(θ)− Ui(θ−i, θ′i)] ≥ ∆ui(θi, θ′i)pi(θi) [LPP ]

Vi = max
γi(θi,θ′i)≥0

∑
θi,θ′i

γi(θi, θ′i)∆ui(θi, θ
′
i)pi(θi)

s.t.
∑
θ′i

γi(θi, θ′i)p−i(θ−i, θi)−
∑
θ′i

γi(θ′i, θi)p−i(θ−i, θ
′
i) ≤ p(θ). [LPD]

where ∆ui(θi, θ′i) =
∑

θ−i∈Θ−i
{ui(x(θ−i, θ′i), (θ−i, θi))− ui(x(θ−i, θ′i), (θ−i, θ

′
i))} p−i(θ−i|θi), and

γi(θ′i, θi) is a dual variables corresponding to the incentive constraint IC(θ, θ′).

Clearly, Vi ≥ Vi(si) for all si ∈ Si. Moreover, the next Proposition shows that, in fact,

Vi = supsi∈Si Vi(si).

Proposition 3 The minimal informational rent of agent i, Vi, satisfies:

Vi = max
si∈Si

Vi(si).

According to Proposition 3, there exists “best” deviation strategy si for agent i which

combines together all profitable deviations for this agent. By preventing such best deviation,
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the mechanism designer prevents the agent from engaging in any other deviation. Hence, the

problem of determining the informational rents Vi for agent i boils down to finding such best

deviation si and the corresponding informational rent Vi(si).

Below, we will address this question as follows. First, we will provide an algorithm for

computing the best si for agent i and the corresponding maximal Vi(si). Second, we provide

a full characterization for the cases #Θi = 2. Third, we provide a general two-step procedure

to characterize more general cases of #Θi > 2, and apply it for a full characterization for the

cases #Θi = 3. All along, we will focus on the conditions on the primitives determining the

value of Vi.

4 Algorithm to calculate information rent

Let A be #Θ×#Θi(#Θi − 1) matrix where A’s θ-th row and (θ̃i, θ̃′i)-th column element is

A[θ, (θ̃i, θ̃′i)] =


p(θ) if θ̃i = θi

−p(θ) if θ̃′i = θi

0 otherwise,

cN = (∆ui(θi, θ′i)pi(θi))θi 6=θ′i,(θi,θ′i)∈Θ2
i

and xN = (γi(θi, θ′i))θi 6=θ′i,(θi,θ′i)∈Θ2
i

be vectors of dimen-

sion #Θi(#Θi−1), and b = (p(θ))θ∈Θ be a vector of dimension #Θ. Then we can write [LPD]

as a matrix form: maxxN cN · xN s.t. AxN ≤ bN .

Let B be identity matrix of dimension #Θ×#Θ and cB be zero vector of dimension #Θ.

Then [LPD] is written as the following with auxiliary variable xB ≥ 0.

max
xN ,xB

cN · xN + cB · xB s.t. AxN +BxB = b (15)

Plugging the constraint into the objective function, we derive:

cN · xN + cB · xB = cN · xN + cB · (B−1b−B−1AxN ) = cBB
−1b+ (cN − cBB−1A)xN . (16)

We start from (xN = 0, xB = b) that is feasible. To keep track of the changes we will make

for the matrices, we denote the initial matrices by c(0)
N , x(0)

N , c(0)
B , x(0)

B , A(0), B(0), and b(0).

We repeat the following step from k = 0.
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(Step k+ 1) Increase an element of x(k)
N (say, (θik, θ′i

k)-th element) such that (θik, θ′i
k)-th col-

umn of (c(k)
N −c

(k)
B [B(k)]−1A(k)) is the largest and positive (c(k)

B = 0 when k = 0; however, that is

not generally the case for k > 0). If there is no positive element in (c(k)
N − c

(k)
B [B(k)]−1A(k)), we

end the procedure here. Note that B(k) is invertible in the ongoing steps, k ≥ 0 (See Appendix

A.7). In equation (16), cN (k) is the (marginal) direct effect of the (marginal) change in xN (k).

The change in xN (k) leads to change in A(k)xN
(k). Accordingly, B(k)xB

(k) changes in the oppo-

site direction (see the constraint in (15)). The change of xB(k) is measured by [B(k)]−1(b(k) −

A(k)xN
(k)), and its effect on the objective function is cB(k)[B(k)]−1(b(k) − A(k)xN

(k)). Thus

cB
(k)[B(k)]−1A(k) is the (marginal) indirect effect of the (marginal) change in xN (k). We inter-

pret this as “externality”. In short, cN (k) − cB(k)[B(k)]−1A
(k) measures the direct benefit net

of externality.

We can increase (θik, θ′i
k)-th element of x(k)

N only without breaking x(k)
B = [B(k)]−1(b(k) −

A(k)x
(k)
N ) ≥ 0, i.e., until a certain row in x

(k)
B becomes zero. Once a certain row of x(k)

B (say,

θk-th row) becomes zero, we form new matrices c(k+1)
N , x(k+1)

N , c(k+1)
B , x(k+1)

B , A(k+1), B(k+1),

and b(k+1) by exchanging θk-th row of x(k)
B and (θik, θ′i

k)-th row of x(k)
N , θk-th column of c(k)

B

and (θki , θ
′
i
k)-th column of c(k)

N , and θk-th column of B(k) and (θki , θ
′
i
k)-th column of A(k),

respectively. Then the linear program still looks the same to (15) with the re-defined c
(k+1)
N ,

x
(k+1)
N , c(k+1)

B , x(k+1)
B , A(k+1), B(k+1), and b(k+1):

max c(k+1)
N · x(k+1)

N + c
(k+1)
B · x(k+1)

B s.t. A(k+1)x
(k+1)
N +B(k+1)x

(k+1)
B = b(k+1) where x

(k+1)
N = 0.

Our algorithm is in fact an economic interpretation of simplex method in linear program-

ming. The following two propositions are well-known in simplex method.

Proposition 4 If (cN − cBB
−1A) ≤ 0 after a certain number of steps, the basic feasible

solution represented by
(
xB

T , xN
T
)

=
(

(B−1b)T , 0
)

is optimal for LPD.

Proposition 5 If the basic feasible solution B−1b is a strictly positive vector in each step, the

algorithm finishes in finite steps to find the optimal value with an optimal γi(·, ·).

However, the basic feasible solution B−1b is often not strictly positive in our context. Thus

the above algorithm may fail to finish in finite steps, and cycle (See Beale (1955) and Marshall
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and Suurballe (1969)). There are a few additional tests preventing such possibility of a cycle,

and the tests can be incorporated into the algorithm so that it finished in finite steps. We

do not discuss the tests here as we do not see meaningful economic intuition behind them.

Interested readers can refer to Dantzig, Orden, and Wolfe (1955) and Bland (1977).

Our problem shares similar features with min cost flow problem (Klein (1967)); however,

our problem is neither a special case nor a general case of of the problem. See Appendix A.4

for the similarities and the differences.

5 Two-step procedure for characterization

Let the expected information rent be Ui(θi) :=
∑

θ−i
Ui(θi, θ−i)p(θ−i|θi). Let Γi be the set of

binding incentive compatibility constraints. Thus, ICi(θi, θ′i) ∈ Γi if and only if γi(θi, θ′i) >

0. We visualize Γi as a directed graph: there is a directed arc from θi to θ′i if and only if

ICi(θi, θ′i) ∈ Γi. Let Πi be the set of all the possible directed graphs.

The primitives of an economy is (Θi, Θ−i, p(θ), ∆ui(θi, θ′i)). Let Ei be the set of all the

possible primitives. We mean by “characterization” that we partition Ei so that each partition

represents necessary and sufficient conditions for a directed graph in Πi. In other words, we

find an onto mapping fi : Ei → Πi.

Our procedure of the characterization is as follows.

1. For given directed graph Γi, we provide the conditions for the binding incentive compat-

ibility constraints and derive informational rent.

2. Then we provide the conditions under which all the other incentive constraints are non-

binding or binding with zero shadow value.

The following lemma simplifies the first procedure.

Lemma 1 For given Γi and given θ′i, if there are k different θis such that ICi(θi, θ′i) ∈ Γi,

then there are at most k states θ−i ∈ Θ−i such that Ui(θ′i, θ−i) is strictly positive.

Proof. For given θ′i and for each θi such that ICi(θi, θ′i) ∈ Γi, the binding incentive compat-

ibility constraint is: Ui(θi) = ∆ui(θi, θ′i) +
∑

θ−i
Ui(θ′i, θ−i)p(θ−i|θi) where the right-hand side

is the gain from imitating θ′i.

14



There are k such constraints since there are k different θi such that ICi(θi, θ′i) ∈ Γi. Thus

for given Ui(θi) such that ICi(θi, θ′i) ∈ Γi, the designer needs to solve the following program

to minimize the information rent given to θ′i, i.e.,

min
Ui(θ′i,θ−i)≥0

∑
θ−i

Ui(θ′i, θ−i)p(θ
′
i, θ−i) (17)

s.t. ∆ui(θi, θ′i) +
∑
θ−i

Ui(θ′i, θ−i)p(θ−i|θi) = Ui(θi),∀θi s.t. ICi(θi, θ′i) ∈ Γi.

Clearly, the optimal solution can be attained with at most k positive Ui(θ′i, θ−i) since there are

k constraints that non-negative vector (Ui(θi))θi∈Θi has to satisfy.

Remark: Suppose there is only one θi such that ICi(θi, θ′i) ∈ Γi for given θ′i. Then the

solution of (17) is Ui(θ′i, θ−i) = Ui(θ
′
i)

p(θ′i,θ−i)
for θ−i = argmin

θ−i

[
p(θi,θ−i)
p(θ′i,θ−i)

]
, and Ui(θi) = ∆ui(θi, θ′i)+

minθ−i
[
p(θi,θ−i)
p(θ′i,θ−i)

]
Ui(θ′i). This finding will be used repeatedly in the following sections.

For any θ′i such that ICi(θi, θ′i) ∈ Γi with at least one θi 6= θ′i, the first procedure determines

how much information rent should be given at each state θ−i. However, for θ′i such that

ICi(θi, θ′i) /∈ Γi with any θi ∈ Θi, the first procedure does not dictate how the expected

information rent Ui(θ′i) is distributed to Ui(θ′i, θ−i). The second procedure will determine the

range how the information rent should be distributed across states Θ−i. The distribution of

information rent Ui(θ′i) to different states θ−i, Ui(θ′i, θ−i), should deter other types θi(6= θ′i) to

imitate θ′i, i.e., the distribution Ui(θ′i, θ−i) should satisfy the following incentive compatibility

constraints:

∆ui(θi, θ′i) +
∑
θ−i

Ui(θ′i, θ−i)p(θ−i|θi) ≤ Ui(θi), ∀θi s.t. ICi(θi, θ′i) /∈ Γi.

We use this two-step procedure to characterize the case of #Θi = 2 and #Θi = 3 in the

following sections.

6 Characterization of the case with #Θi = 2

Let Θi = {θ1
i , θ

2
i }. If ∆ui(θ1

i , θ
2
i ) < 0 and ∆ui(θ2

i , θ
1
i ) < 0, then si(θi, θi) ≡ 1 is optimal trivially.
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Suppose ∆ui(θ1
i , θ

2
i ) > 0 and ∆ui(θ1

i , θ
2
i )pi(θ

1
i ) ≥ ∆ui(θ2

i , θ
1
i )pi(θ

2
i ) without loss of general-

ity. There are two possibilities: si(θ2
i , θ

1
i ) > 0 or si(θ2

i , θ
1
i ) = 0 depicted below.

θ1
i

si(θ
1
i ,θ

1
i )

'' si(θ
1
i ,θ

2
i )
**
θ2
i

si(θ
2
i ,θ

2
i )

ww

si(θ
2
i ,θ

1
i )

jj or θ1
i

si(θ
1
i ,θ

1
i )

'' si(θ
1
i ,θ

2
i )
**
θ2
i

si(θ
2
i ,θ

2
i )

ww

si(θli, θ
k
i ) > 0 implies that the incentive compatibility constraint for θli not to imitate θki is bind-

ing. Directed arcs in the diagrams represent the binding incentive compatibility constraints.

6.1 The case with si(θ
2
i , θ

1
i ) > 0:

From the remark following Lemma 1, we derive:

Ui(θ1
i ) = ∆ui(θ1

i , θ
2
i ) + Ui(θ2

i ) min
θ−i

p(θ1
i , θ−i)

p(θ2
i , θ−i)

, Ui(θ2
i ) = ∆ui(θ2

i , θ
1
i ) + Ui(θ1

i ) min
θ−i

p(θ2
i , θ−i)

p(θ1
i , θ−i)

.

Solving the simultaneous equation, we derive:

Ui(θ1
i ) =

∆ui(θ1
i , θ

2
i ) + ∆ui(θ2

i , θ
1
i ) minθ−i

p(θ1
i ,θ−i)

p(θ2
i ,θ−i)

1−minθ−i
p(θ2

i ,θ−i)

p(θ1
i ,θ−i)

minθ−i
p(θ1

i ,θ−i)

p(θ2
i ,θ−i)

, Ui(θ2
i ) =

∆ui(θ2
i , θ

1
i ) + ∆ui(θ1

i , θ
2
i ) minθ−i

p(θ2
i ,θ−i)

p(θ1
i ,θ−i)

1−minθ−i
p(θ2

i ,θ−i)

p(θ1
i ,θ−i)

minθ−i
p(θ1

i ,θ−i)

p(θ2
i ,θ−i)

.

The following is equivalent to Ui(θ1
i ) and shows better how information rent is accumulated.

Ui(θ1
i ) =∆ui(θ1

i , θ
2
i ) + min

p(·|θ1
i )

p(·|θ2
i )

∆ui(θ2
i , θ

1
i ) + min

p(·|θ1
i )

p(·|θ2
i )

min
p(·|θ2

i )
p(·|θ1

i )
∆ui(θ1

i , θ
2
i )

+
[
min

p(·|θ1
i )

p(·|θ2
i )

]2

min
p(·|θ2

i )
p(·|θ1

i )
∆ui(θ2

i , θ
1
i ) +

[
min

p(·|θ1
i )

p(·|θ2
i )

]2 [
min

p(·|θ2
i )

p(·|θ1
i )

]2

∆ui(θ1
i , θ

2
i ) + . . .

The designer gives information rent ∆ui(θ1
i , θ

2
i ) to type 1, then type 2 wants to imitate 1; so the

designer gives ∆ui(θ2
i , θ

1
i ) to type 2, then type 1 wants to imitate type 1 due to the increased

benefit of imitating type 2; so the designer adds the benefit of imitation min p(·|θ1
i )

p(·|θ2
i )

∆ui(θ2
i , θ

1
i ) to

type 1’s information rent, then type 2 wants to imitate 1 due to the addition; so the designer

add min p(·|θ2
i )

p(·|θ1
i )

∆ui(θ1
i , θ

2
i ) to type 2’s information rent, then type 1 wants to imitate type 2

again; so the designer adds min p(·|θ1
i )

p(·|θ2
i )

min p(·|θ2
i )

p(·|θ1
i )

∆ui(θ1
i , θ

2
i ) to type 1’s information rent; and

so on.

In summary, we derive:

Vi = pi(θ1
i )Ui(θ

1
i ) + pi(θ2

i )Ui(θ
2
i ) =

∆ui(θ1
i , θ

2
i )
[
1 + min p(θ2

i ,·)
p(θ1

i ,·)

]
pi(θ1

i ) + ∆ui(θ2
i , θ

1
i )
[
1 + min p(θ1

i ,·)
p(θ2

i ,·)

]
pi(θ2

i )

1−min p(θ2
i ,·)

p(θ1
i ,·)

min p(θ1
i ,·)

p(θ2
i ,·)

.
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6.2 The case with si(θ
2
i , θ

1
i ) = 0:

Following the remark after Lemma 1, we trivially derive:

Ui(θ1
i ) = ∆ui(θ1

i , θ
2
i ), Ui(θ

2
i ) = 0, and Vi = ∆ui(θ1

i , θ
2
i )p(θ

1
i ).

6.3 Characterization

Let us compare the two optimal values of the two cases:

∆ui(θ1
i , θ

2
i )p(θ

1
i ) ≶

∆ui(θ1
i , θ

2
i )
(

1 + min p(θ2
i ,·)

p(θ1
i ,·)

)
pi(θ1

i ) + ∆ui(θ2
i , θ

1
i )
(

1 + min p(θ1
i ,·)

p(θ2
i ,·)

)
pi(θ2

i )

1−min p(θ2
i ,·)

p(θ1
i ,·)

min p(θ1
i ,·)

p(θ2
i ,·)

⇔ 0 ≶ ∆ui(θ2
i , θ

1
i ) + ∆ui(θ1

i , θ
2
i ) min

θ−i

p(θ−i|θ2
i )

p(θ−i|θ1
i )
. (18)

Condition (18) means that if the θ2
i ’s utility loss from imitating θ1

i (that is −∆ui(θ2
i , θ

1
i )) is

smaller than the information rent from imitating (that is
[
∆ui(θ1

i , θ
2
i ) minθ−i

p(θ−i|θ2
i )

p(θ−i|θ1
i )

]
), then

θ2
i will have incentive to imitate θ1

i . Thus inequality (18) characterizes the case with #Θi = 2.

7 Characterization of the case with #Θi = 3

There are three types of agent i, θi ∈ {θ1
i , θ

2
i , θ

3
i }, andM types of agent (−i), θ−i ∈ {θ1

−i, . . . , θ
M
−i}.

For notational simplicity, we re-define notations: the probability distribution function is pjk :=

p(θji , θ
k
−i), type j’s marginal distribution is pj =

∑
θ−i∈Θ−i

p(θji , θ−i), conditional probability of

θk−i given θji is pkj = pjkP
1≤l≤M pjl

, Rj := Ui(θ
j
i ), Rj(k) := Ui(θ

j
i , θ

k
−i), and γjk := γi(θ

j
i , θ

k
i ) and

∆jk := ∆ui(θ
j
i , θ

k
i ). We also define Rj = (Ui(θ

j
i , θ

k
−i))k∈Θ−i , and Pj = (pkj )k∈Θ−i .

A binding incentive constraint between types θji to θki is represented by a directed arc from

θji to θki in a graph with nodes of {θ1
i , θ

2
i , θ

3
i }. There are sixteen directed graphs to consider up

to permutation of agent i’s types (Figure 1).

Case 1: θ3
i θ2

i θ1
i

Information rents are trivially: R1 = 0, R2 = 0, R3 = 0.

Six incentive compatibility constraints characterizing this case are:

R1 = 0 ≥ ∆12, R1 = 0 ≥ ∆13, R2 = 0 ≥ ∆21, R2 = 0 ≥ ∆22, R3 = 0 ≥ ∆31, R3 = 0 ≥ ∆32.
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Figure 1:

Case 2: θ3
i θ2

i
oo θ1

i

Informational rents are trivially: R1 = 0, R2 = ∆23, R3 = 0. Case 2 arises if and only if:

R2 = ∆23 ≥ 0, R1 = 0 ≥ ∆13, R2 = ∆23 ≥ ∆21, R3 = 0 ≥ ∆31,

∃(R2(k) ≥ 0)k∈Θ−i s.t. ∆23 =
∑
k

R2(k)pk2, 0 ≥ ∆12 +
∑
k

R2(k)pk1, 0 ≥ ∆32 +
∑
k

R2(k)pk3.

The first constraint is non-negativity of type θ2
i ’s information rent. The next three constraints

are type θ1
i ’s incentive compatibility constraint not to imitate θ3

i , type θ2
i ’s constraint not to

imitate θ3
i , and type θ3

i ’s constraint not to imitate θ1
i . In the second line, the first equality

means that θ2
i ’s expected information rent is ∆23. The last two inequalities are type θ1

i ’s

incentive compatibility constraint not to imitate θ2
i and type θ3

i ’s constraint not to imitate θ2
i .

The second line of the condition can be written as P2 ·R2 = ∆23, P1 ·R2 ≤ −∆12, P3 ·R2 ≤

−∆32. We can show that the following is a necessary and sufficient condition for the existence

of such R2 ≥ 0 (See Appendix A.5 for proof).

α∆12 + (1− α)∆32 + ∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
≤ 0, ∀α ∈ [0, 1].

For α = 0, the last inequality implies ∆32 + ∆23 mink
[
pk3
pk2

]
≤ 0, which means that the misrep-

resentation of θ3
i can be deterred. For α = 1, the inequality implies ∆12 + ∆23 mink

[
pk1
pk2

]
≤ 0,

which means that θ1
i ’s misrepresentation is deterred. The inequality could also be written as:

−α∆12

∆23
− (1− α)

∆32

∆23
≥ min

k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
, ∀α ∈ [0, 1].
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For given α, the constraint is “easier” to satisfy as the structure of Θ−i becomes “richer”.

Case 3: θ3
i θ2

i
oo θ1

i
oo

We compute the informational rent as follows:

R3 = 0, R2 = ∆23, R1 = ∆12 + min
k

pk1
pk2
R2 = ∆12 + min

k

pk1
pk2

∆23

θ2
i receives positive rent at state θk2

−i for k2 = argmin pk1/p
k
2. The conditions for this case are:

R1 = R1 · P1 = ∆12 + min
k

pk1
pk2

∆23 ≥ 0, R2 = ∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 ≥ ∆13,

0 ≥ ∆32 +
pk2

3

pk2
2

∆23, ∆23 ≥ ∆21 +
∑

R1(k)pk2, 0 ≥ ∆31 +
∑

R1(k)pk2.

The first two are non-negativity conditions for R1 and R2. The last four conditions are for θ1
i

not to imitate θ3
i , for θ3

i not to imitate θ2
i , for θ2

i not to imitate θ1
i , and for θ3

i not to imitate

θ1
i .

Similarly to case 2, the following is a necessary and sufficient condition for case 3.

∆12 + min
k

pk1
pk2

∆23 ≥ 0, ∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 ≥ ∆13, 0 ≥ ∆32 +
pk2

3

pk2
2

∆23(
∆12 + min

k

pk1
pk2

∆23

)
min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
+ α(∆21 −∆23) + (1− α)∆31 ≤ 0, ∀α ∈ [0, 1].

Case 4: θ3
i θ2

i
oo // θ1

i
(non-generic case)

Information rents are: R1 = 0, R2 = ∆23 = ∆32, R3 = 0. Note that this case is non-generic

because it requires ∆23 = ∆32. This case arises under the following conditions:

∆23 = ∆32 = R2 · P2 ≥ 0, 0 ≥ ∆12 +R2 · P1, 0 ≥ ∆13, 0 ≥ ∆31, 0 ≥ ∆32 +R2 · P3.

Similarly to case 2, the following is a necessary and sufficient condition for case 4.

∆23 = ∆32 ≥ 0, 0 ≥ ∆13, 0 ≥ ∆31, ∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
+ α∆12 + (1− α)∆32 ≤ 0,∀α ∈ [0, 1].

Case 5: θ3
i

// θ2
i θ1

i
oo

The informational rents are: R1 = ∆12, R2 = 0, R3 = ∆32. This case is characterized by:

∆12 ≥ 0, ∆32 ≥ 0, ∆12 ≥ ∆13 +R3 · P1, 0 ≥ ∆23 +R3 · P2, ∆32 = R3 · P3,

0 ≥ ∆21 +R1 · P2, ∆32 ≥ ∆31 +R1 · P3, ∆12 = R1 · P1
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Similarly to case 2, the following is a necessary and sufficient condition for case 5.

∆12 ≥ 0, ∆32 ≥ 0, α(∆13 −∆12) + (1− α)∆23 + ∆32 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1],

α∆21 + (1− α)(∆31 −∆32) + ∆12 min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
≤ 0, ∀α ∈ [0, 1].

Case 6: θ1
i θ2

i
))
θ3
iii

From R1 = 0, R2 = ∆23 +mink
pk2
pk3
R3, R3 = ∆32 +mink

pk3
pk2
R2, we derive informational rent:

R1 = 0, R2 =
∆23 + mink

pk2
pk3

∆32

1−mink
pk2
pk3

mink
pk3
pk2

, R3 =
∆32 + mink

pk3
pk2

∆23

1−mink
pk3
pk2

mink
pk2
pk3

.

Let k23 = argmin
k

pk2
pk3

, and k32 = argmin
k

pk3
pk2

. Type θ2
i receives positive rent at state (θ2

i , θ
k32
−i ),

and type θ3
i at (θ3

i , θ
k23
−i ). For the information rent to be finite, k23 and k32 should be different.3

The necessary and sufficient conditions for this case are:

k23 6= k32, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +
pk23

1

pk23
3

R3, R1 ≥ ∆12 +
pk32

1

pk32
2

R2, R2 ≥ ∆21, R3 ≥ ∆32.

Case 7: θ1
i

// θ2
i

// θ3
ijj

From R1 = ∆12 + mink
pk1
pk2
R2, R2 = ∆23 + mink

pk2
pk3
R3, R3 = ∆31 + mink

pk3
pk1
R1, we derive:

R1 =
∆12 + p

k1
1

p
k1
2

∆23 + p
k1
1

p
k1
2

p
k2
2

p
k2
3

∆31

1− p
k1
1

p
k1
2

p
k2
2

p
k2
3

p
k3
3

p
k3
1

, R2 =
∆23 + p

k2
2

p
k2
3

∆31 + p
k2
2

p
k2
3

p
k3
3

p
k3
1

∆12

1− p
k1
1

p
k1
2

p
k2
2

p
k2
3

p
k3
3

p
k3
1

, R3 =
∆31 + p

k3
3

p
k3
1

∆12 + p
k3
3

p
k3
1

p
k1
1

p
k1
2

∆23

1− p
k1
1

p
k1
2

p
k2
2

p
k2
3

p
k3
3

p
k3
1

where k1 = argmin
k

pk1
pk2

, k2 = argmin
k

pk2
pk3

, and k3 = argmin
k

pk3
pk1

.

Type θ1
i receives positive rent at state (θ1

i , θ
k3
−i), type θ2

i at (θ2
i , θ

k1
−i), and type θ3

i at (θ3
i , θ

k2
−i).

For finite information rent, at least two of k1, k2, and k3 should be different. The conditions

for this case are:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +
pk2

1

pk2
3

R3, R2 ≥ ∆21 +
pk3

2

pk3
1

R1, R3 ≥ ∆32 +
pk1

3

pk1
2

R2.

3Note mink p
k
2/p

k
3 mink p

k
3/p

k
2 < 1 if and only if k23 6= k32 since mink p

k
l /p

k
m < 1 unless p(·|θmi ) ≡ p(·|θli).
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Assuming all of k1, k2, k3 are all different, The last three inequalities can be simplified into

R1 ≥
∆13 + p

k2
1

p
k2
3

∆31

1− p
k2
1

p
k2
3

p
k3
3

p
k3
1

, R2 ≥
∆21 + p

k3
2

p
k3
1

∆12

1− p
k3
2

p
k3
1

p
k1
1

p
k1
2

, R3 ≥
∆32 + p

k1
3

p
k1
2

∆23

1− p
k1
3

p
k1
2

p
k2
2

p
k2
3

.

These conditions mean that any deviation to form a local cycle (as in case 6) is never profitable.

Case 8: θ1
i 44// θ2

i
// θ3
i

(non-generic case)

Information rents are:

R3 = 0, R2 = ∆23, R1 = ∆12 + min
k

pk1
pk2
R2 = ∆12 + min

k

pk1
pk2

∆23 = ∆13.

Note that ∆12 + mink
pk1
pk2

∆23 = ∆13 is a measure zero case. Thus this is a non-generic case.

For k2 = argmin pk1
pk2

, type θ2
i receives positive rent at (θ2

i , θ
k2
−i). This case is characterized

by the following conditions on the primitive:

∆23 ≥ 0, R1 · P1 = ∆12 + min
k

pk1
pk2

∆23 = ∆13 ≥ 0,

R2 = ∆23 ≥ ∆21 +R1 · P2, R3 = 0 ≥ ∆31 +R1 · P3, R3 = 0 ≥ ∆32 +
pk2

3

pk2
2

R2 = ∆32 +
pk2

3

pk2
2

∆23.

Similarly to case 2, the following is a necessary and sufficient condition for case 8.

∆23 ≥ 0, ∆12 + min
k

pk1
pk2

∆23 = ∆13 ≥ 0, 0 ≥ ∆32 +
pk2

3

pk2
2

∆23,

∆13 min
k

[
α
pk2
pk1

+ (1− α)
pk3
pk1

]
+ α(∆21 −∆23) + (1− α)∆31 ≤ 0, ∀α ∈ [0, 1].

Case 9: θ3
i

// θ2
i

,, θ1
ill

Information rents (Derivation is in Appendix A.6.) are:

R1 =
∆12 + pk̄1

pk̄2
∆21

1− pk̄1
pk̄2

mink
pk2
pk1

, R2 =
∆21 + mink

pk2
pk1

∆12

1− pk̄1
pk̄2

mink
pk2
pk1

, R3 = ∆32 +
pk̄3

pk̄2

∆21 + mink
pk2
pk1

∆12

1− pk̄1
pk̄2

mink
pk2
pk1

.

where k̄ = argmin
k̃

(
1 + p1k̃+p3k̃

p2k̃

)/(
1 − pk̃1

pk̃2
mink

pk2
pk1

)
. Let k2 := argmin pk2

pk1
. Information rent is

finite if k̄ 6= k1. Type θ2
i receives positive rent at state (θ2

i , θ
k̄
−i), and type θ1

i at state (θ1
i , θ

k2
−i).

This case is characterized by the following conditions on the primitive.

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R1 ≥ ∆13 +R3 · P1, R2 ≥ ∆23 +R3 · P2, R3 ≥ ∆31 +R1
pk2

3

pk2
1

.
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Similarly to case 2, the following is a necessary and sufficient condition for case 9.

∆12 + pk̄1
pk̄2

∆21

1− pk̄1
pk̄2

p
k2
2

p
k2
1

≥ 0,
∆21 + p

k2
2

p
k2
1

∆12

1− pk̄1
pk̄2

p
k2
2

p
k2
1

≥ 0, ∆32 +
pk̄3

pk̄2

∆21 + p
k2
2

p
k2
1

∆12

1− pk̄1
pk̄2

p
k2
2

p
k2
1

≥ 0, R3 ≥ ∆31 +R1
pk1

3

pk1
1

,

α(∆13 −R1) + (1− α)(∆23 −R2) +R3 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1].

Case 10: θ3
i θ2

i
oo ,, θ1

ill (non-generic case)

From R2 = ∆21 +R1 mink
pk2
pk1

= ∆23, R1 = ∆12 +R2 mink
pk1
pk2

, R3 = 0, information rents are

R1 =
∆12 + mink

pk1
pk2

∆21

1−mink
pk2
pk1

mink
pk1
pk2

, R2 =
∆21 + mink

pk2
pk1

∆12

1−mink
pk2
pk1

mink
pk1
pk2

= ∆23, R3 = 0

This is a non-generic case because of the second equality.

Type θ1
i receives positive rent at state k1 = argmin pk1

pk2
, and θ2

i at state k2 = argmin pk2
pk1

.

k1 6= k2 is required for finite information rent. This case is characterized by the following.

R1 ≥ 0, R2 ≥ 0, R1 ≥ ∆13, R3 = 0 ≥ ∆31 +
pk1

3

pk1
1

R1, R3 = 0 ≥ ∆32 +
pk2

3

pk2
2

R2.

Case 11: θ3
i

,, θ2
ill ,, θ1

ill

Information rents are decided by:

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3 s.t. R1 = ∆12 +
∑
k

R2(k)pk1, R3 = ∆32 +
∑
k

R2(k)pk3

∑
k

R2(k)pk2 = ∆21 + min
k

pk2
pk1
R1 = ∆23 + min

k

pk2
pk3
R3.

By eliminating R1 and R3, we get

min
R2(k)

p1∆12 + p3∆32 +
∑
k

R2(k)(p1k + p2k + p3k)

s.t.
∑
k

R2(k)
(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
= ∆21,

∑
k

R2(k)
(
pk2 −min

k̃

pk̃2

pk̃3
pk3

)
= ∆23

The solution exists unless the following two vectors are parallel, but not identical.

1
∆21

(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
1≤k≤M

and
1

∆23

(
pk2 −min

k̃

pk̃2

pk̃3
pk3

)
1≤k≤M

.
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Clearly we can find a solution R2 such that there are at most two states k where R2(k) > 0.

Denote such k to be θ1
−i and θ3

−i. Define

argmin
k

pk2
pk1

= 1, argmin
k

pk2
pk3

= 3, C(2, 3) =
∆23 + p3

2

p3
3
∆32

1− p3
2

p3
3

p1
3

p1
2

, C(2, 1) =
∆21 + p1

2

p1
1
∆12

1− p1
2

p1
1

p3
1

p3
2

.

Then information rents are:

R2(1) =
1
p1

2

C(2, 3), R2(2) =
1
p3

2

C(2, 1), R2 = C(2, 3) + C(2, 1),

R1 = ∆12 +
p1

1

p1
2

C(2, 3) +
p3

1

p3
2

C(2, 1), R3 = ∆32 +
p1

3

p1
2

C(2, 3) +
p3

3

p3
2

C(2, 1).

For the computed R1, R2 and R3, the conditions characterizing this case are:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R3 ≥ ∆31 +
p1

3

p1
1

R1, R1 ≥ ∆13 +
p3

1

p3
3

R3.

Case 12: θ3
i θ2

i
oo ,, θ1

i
oojj (non-generic case)

From R1 = ∆13 = ∆12 + mink
pk1
pk2
R2, R2 = ∆23 = ∆21 + mink

pk2
pk1
R1, R3 = 0, we get:

R1 = ∆13 =
∆12 + mink

pk1
pk2

∆21

1−mink
pk2
pk1

mink
pk1
pk2

, R2 = ∆23 =
∆21 + mink

pk2
pk1

∆12

1−mink
pk2
pk1

mink
pk1
pk2

, R3 = 0.

Note that this is a measure zero case. Also, for the information rent to be finite, k2 =

argmin pk2
pk1
6= k1 = argmin pk1

pk2
is required. This case is characterized by the following.

∆13 =
∆12 + p

k1
1

p
k1
2

∆21

1− p
k2
2

p
k2
1

p
k1
1

p
k1
2

, ∆23 =
∆21 + p

k2
2

p
k2
1

∆12

1− p
k2
2

p
k2
1

p
k1
1

p
k1
2

, 0 ≥ ∆32 +
pk2

3

pk2
2

R2, 0 ≥ ∆31 +
pk1

3

pk1
1

R1, k1 6= k2

Case 13: θ3
i

// θ2
i

,, θ1
i

oojj

Similarly to case 11, information rents are calculated by:

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3 s.t. R1 = ∆12 +
∑
k

R2(k)pk1 = ∆13 + min
k

pk1
pk3
R3,

∑
k

R2(k)pk2 = ∆21 + min
k

pk2
pk1
R1, R3 = ∆32 +

∑
k

R2(k)pk3.
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As in case 11, the solution exists unless the following two vectors are parallel, but not identical.

1
∆21

(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
1≤k≤M

and
1

∆23

(
pk2 −min

k̃

pk̃1

pk̃3
pk3

)
1≤k≤M

.

For k1 = argmin pk2
pk1

and k3 = argmin pk3
pk1

, this case is characterized by:

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, R3 ≥ ∆31 +
pk1

3

pk1
1

R1, R2 ≥ ∆23 +
pk3

2

pk3
3

R3.

Case 14: θ3
i

// 44θ2
i

,, θ1
i

oo

Information rents are characterized by:

min
R1(k),R2(k),R3

p1R1 · P1 + p2R2 · P2 + p3R3 s.t. R1 · P1 = ∆12 +R2 · P1, R2 · P2 = ∆21 +R1 · P2,

R3 = ∆31 +R1 · P3 = ∆32 +R2 · P3.

Suppose M = 2, i.e., Θ−i = {θ1
−i, θ

2
−i}. The constraints are simplified into

[R1(1)−R2(1)]p1
1 + [R1(2)−R2(2)]p2

1 = ∆12, [R1(1)−R2(1)]p1
2 + [R1(2)−R2(2)]p2

2 = −∆21,

[R1(1)−R2(1)]p1
3 + [R1(2)−R2(2)]p2

3 = −∆31.

Generically, a solution (R1(1) − R2(1), R1(2) − R2(2)) does not exist. However, if there are

more than two states, a solution exists generically. For example, if there are three states,

Θ−i = {θ1
−i, θ

2
−i, θ

3
−i}, the constraints are

A


R1(1)−R2(1)

R1(2)−R2(2)

R1(3)−R2(3)

 =


∆12

−∆21

−∆31

 where A =


p1

1 p2
1 p3

1

p1
2 p2

2 p3
2

p1
3 p2

3 p3
3

 .

The unique solution (R1(1)−R2(1), R1(2)−R2(2), R1(3)−R2(3)) exists generically since matrix

A is invertible generically. Plugging these into the objective function, p1(R1(1)p1
1 +R1(2)p2

1 +

R1(3)p3
1) + p2(R2(1)p1

2 + R2(2)p2
2 + R2(3)p3

2) + p3R3, we can compute information rent. (The

extension to the case of M > 3 is straightforward, so we omit it.) Once we calculate R3, R1,

and R2, we can derive the incentive compatibility constraints characterizing this case:

R1 · P1 ≥ 0, R2 · P2 ≥ 0, R3 ≥ 0, R1 · P1 ≥ ∆13 +R3 · P1, R2 · P2 ≥ ∆23 +R3 · P2.
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Similarly to case 2, the following is a necessary and sufficient condition for case 14.

R1 · P1 ≥ 0, R2 · P2 ≥ 0,

α(∆13 −R1) + (1− α)(∆23 −R2) +R3 min
k

[
α
pk1
pk3

+ (1− α)
pk2
pk3

]
≤ 0, ∀α ∈ [0, 1].

Case 15: θ3
i

,, 44θ2
i

oo ,, θ1
i

oo

Information rent is calculated by:

min
R1,R2,R3

p1R1 · P1 + p2R2 · P2 + p3R3 s.t. R1 · P1 = ∆12 +R2 · P1,

R3 = ∆31 +R1 · P3 = ∆32 +R2 · P3.

R2 · P2 = ∆21 +R1 · P2 = ∆23 + min
k

pk2
pk3
R3.

For the calculated information rent, the following characterizes case 15:

R1 · P1 ≥ 0, R2 · P2 ≥ 0, R3 ≥ 0, R1 · P1 ≥ ∆13 +
pk̄1

pk̄3
R3 where k̄ = argmin

pk2
pk3
.

Note that if M = 2, the solution of the above program does not exist in general.4

Case 16: θ3
i

-- 44θ2
i

mm -- θ1
i

mmtt

Information rents are derived by:

min
R1,R2,R3

R1 · P1 +R2 · P2 +R3 · P3

s.t. R1 · P1 = ∆12 +R2 · P1 = ∆13 +R3 · P1, R2 · P2 = ∆21 +R1 · P2 = ∆23 +R3 · P2,

R3 · P3 = ∆31 +R1 · P3 = ∆32 +R2 · P3.

The conditions characterizing case 16 are:

R1 · P1 ≥ 0, R2 · P2 ≥ 0, R3 · P3 ≥ 0

4After eliminating R3 by replacement, and assuming
p12
p13
<

p22
p33

without loss of generality, the constraints are

reduced to the following if M = 2.

p1
1[R1(1)−R2(1)] +

p2
1

p2
2

p11
p13

(∆31 −∆32)−∆21

1− p12
p13

p23
p22

= ∆12, p
1
2[R1(1)−R2(1)] +

p11
p13

(∆31 −∆32)−∆21

1− p12
p13

p23
p22

= −∆21

Generically, [R1(1)−R2(1)] cannot satisfy both of the equations.
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Again, if M = 2, the domain of the linear program is generically empty.5

8 Conclusions

[To be added]
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A Appendix

A.1 Proof of Proposition 1

“If” part: For each i, let U∗i (θ) be a solution to (9) and suppose that (11) hold. Now consider a profile

of players expected surpluses, (Û1(θ), U∗2 (·), ..., U∗n(·)), where Û1(θ) = U∗1 (θ)+S−
∑n
i=1 Vi for all θ ∈ Θ.

Obviously, this profile of expected surpluses satisfies all constraints in (6)-(8).

“Only If” part: The proof is obvious, and is therefore omitted.

A.2 Proof of Proposition 2

Consider the Program [LPD(si)]. Since its objective of is increasing in α(si), it is optimal to set α(si)

at the maximum i.e., α(si) = minθ
p(θ)

p(θ)−q(θ|si,s∗−i)
, which gives us expression (14).
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A.3 Proof of Proposition 3

At first, we establish the following Lemma:

Lemma 2 γi(θi, θ′i) = si(θi, θ′i)αi for an αi ≥ 0 and si(θi, θ′i) ≥ 0 such that
∑
θ′i
si(θi, θ′i) = 1.

Proof. Suppose not. Then,
∑
θ′i
γi(θi, θ′i) = f(θi) where f(·) is not a constant function. Let αi =

maxθi
f(θi). Note that γi(θi, θi) could be an arbitrary non-negative number since the incentive com-

patibility constraint associated with γi(θi, θi) is a trivial constraint. Redefine γi(θi, θi) as γ̃i(θi, θi) =

γi(θi, θi) + (αi − f(θi)). Then we derive the condition
∑
θ′i
γi(θi, θ′i) = αi for all θi. Simply by defining

si(θi, θ′i) := γi(θi, θ′i)/αi, we prove the Lemma.

To prove the Proposition, first, notice that Vi ≥ Vi(si) for any si ∈ Si. So it is sufficient to establish

that Vi ≤ Vi(si) for some si ∈ Si.

By Lemma 2, we can take si(θi, θ′i) := γi(θi, θ′i)/αi and
∑
θ′i
si(θi, θ′i) = 1. Since the domain for

the above maximization problem is compact, there is si ∈ Si that maximizes the above program. For

such si, we get

Vi ≤ gi(si)
p(θ)

p(θ)− q(θ|si)
for all θ such that q(θ|si) < p(θ).

If there is no such θ, Vi = 0 trivially. Take θ̄ such that θ̄ = argmin
θ
{ q(θ|si)

p(θ) }. Then Vi ≤ gi(si) p(θ̄)

p(θ̄)−q(θ̄|si)
=

Vi(si).

A.4 Comparison with min cost flow problem

Consider the following operation research question. There are |Θi| cities. There is marginal benefit

of transferring resource from city θi to city θ′i, denoted by ∆ui(θi, θ′i)pi(θi). If its sign is negative,

it is marginal cost. Let the flow from city θi to θ′i to be γ(θi, θ′i). Then the objective function is

maxγ(·,·)
∑
θi,θ′i

[∆ui(θi, θ′i)pi(θi)]γ(θi, θ′i). Let θ−i be the variable denoting the weather distribution

over the cities. Each city produces unit amount of resource. The transfer technology is not perfect:

e.g., there could be leakage in transferring water, or there could be “leakage” from the underground

water into the pipe. Let us say the leakage is at the rate of 1− p(θ′i,θ−i)
p(θi,θ−i)

when water is transferred from

city θ′i to city θi in weather θ−i. If 1 − p(θ′i,θ−i)
p(θi,θ−i)

is negative, it means that the water is “leaked” from

the underground to the pipe during the transfer. Thus the inflow to city θi is
∑
θ′i
γ(θ′i, θi)

p(θ′i,θ−i)
p(θi,θ−i)

, and

the outflow is
∑
θ′i
γ(θi, θ′i). Thus the constraint city θi faces is∑

γ(θ′i, θi)
p(θ′i, θ−i)
p(θi, θ−i)︸ ︷︷ ︸

inflow

−
∑

γ(θi, θ′i)︸ ︷︷ ︸
outflow

+ 1︸︷︷︸
production

≥ 0,
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which is equivalent to the constraint of [LPD]. Note that the planning of the transfer (the decision of

γ(·, ·)) should be arranged before knowing the weather.

Our problem is more general than min cost flow problem in the following senses: the coefficients of

the objective function, ∆ui(θi, θ′i)pi(θi) could be positive or negative depending on (θi, θ′i), and there are

more constraints because of “weather” θ−i. Our problem is more special in the following senses: there

are no capacity constraints on arcs, and the gain/loss function g(θi, θ′i) := p(θ′i,θ−i)
p(θi,θ−i)

is antisymmetric for

given θ−i, i.e., g(θi, θ′i) = 1/g(θ′i, θi).

A.5 Proof for case 2

For the existence of R2 ≥ 0 such that P2 ·R2 = ∆23, P1 ·R2 ≤ −∆12, P3 ·R2 ≤ −∆32, let us consider

the following linear program:

max
R2≥0

R2 · 0 s.t. P1 · R2 ≤ −∆12, P3 · R2 ≤ −∆32, P2 · R2 = ∆23. (19)

Let ρ1, ρ3, and γ be the dual variables for constraints of (19). Dual linear program is:6

min
ρ1≥0,ρ2≥0,γ

(−∆12,−∆32,∆23) · (ρ1, ρ3, γ) s.t. pk1ρ1 + pk3ρ3 + pk2γ ≥ 0 for all k. (20)

Clearly, ρ1 = ρ3 = γ = 0 is a feasible solution, and the value of the dual linear program is zero at

it. The optimal value of the primal linear program is zero, as long as the domain of the primal linear

program is non-empty. Thus, R2 exists if and only if the optimal value of the dual linear program is

zero, i.e., if and only if ρ1 = ρ3 = γ = 0 is an optimal solution.

Each constraint pk1ρ1 + pk3ρ3 + pk2γ ≥ 0 (indexed by k) represents a half-space in three-dimensional

Euclidean space R3 passing the origin. Let us denote each by Hk. Also ρ1, ρ3 ∈ R+ can be represented

by half planes, 1·ρ1+0·ρ3+0·γ ≥ 0 and 0·ρ1+1·ρ3+0·γ ≥ 0; let the first half-space be Q1, and the second

half-space be Q3. Intersection of half-spaces passing the origin is a convex polyhedral cone. Thus the

feasibility of the dual linear program is summarized by convex polyhedral cone
(⋂

k∈Θ−i
Hk

)
∩Q1∩Q2.

If the minimum is achieved at (ρ1 = 0, ρ3 = 0, γ = 0), the value of the objective function (weakly)

decreases by moving from (ρ1 = 0, ρ3 = 0, γ = 0) to some other point in the convex cone. For α ∈ [0, 1],

consider the following point:(
ρ1 = εα, ρ3 = ε(1− α), γ = −εmin

k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

])
.

6The first two constraints for the primal LP are inequality constraints; thus, the dual variables for the

constraints will be non-negative, i.e., ρ1 ≥ 0 and ρ3 ≥ 0. The last constraint for the primal LP is equality

constraint; thus, the dual variable can be negative or positive, i.e., γ ∈ R. Also the primal LP restricts that

R2(k) is non-negative; thus the each dual constraint corresponding to each R2(k) is an inequality constraint.
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Point (ρ1 = εα, ρ3 = ε(1− α)) is away from (0, 0) in the direction of (α, 1 − α), and γ was minimally

changed so that all the constraints in (20) are still satisfied, and at least one constraint is binding.7 For

k ∈ argmin
[
α
pk
1
pk
2

+ (1− α)p
k
3
pk
2

]
, constraint k is still binding after this change.

From this change, the value of the objective function (see (20)) increases by

ε

[
−α∆12 − (1− α)∆32 −∆23 min

k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]]
.

This change of the value is non-negative if and only if (ρ1 = 0, ρ3 = 0, γ = 0) is the minimum of the

dual linear program. Thus, the condition for the existence of R2 ≥ 0 is:

α∆12 + (1− α)∆32 + ∆23 min
k

[
α
pk1
pk2

+ (1− α)
pk3
pk2

]
≤ 0, ∀α ∈ [0, 1].

(Notice that a local minimum of the dual linear program is the global minimum.)

A.6 Derivation of information rent for case 9

Binding incentive compatibility constraints were enough to characterize information rent so far. How-

ever, concern on minimization is required in this case. Also, unlike Example 1, there could be more

than one state where type θ2
i receives positive rent as there are two types trying to imitate type θ2

i .

The following minimization problem characterizes information rent.

min
R1,R2(k),R3

p1R1 + p2

∑
k

R2(k)pk2 + p3R3

s.t.
∑
k

R2(k)pk2 = ∆21 +R1 min
k

pk2
pk1
, R1 = ∆12 +

∑
k

R2(k)pk1 , R3 = ∆32 +
∑
k

R2(k)pk3 .

Plugging the second and the third constraints into the first and the objective function, we get:

min
R2(k)

p1∆12 + p3∆32 +
∑
k

R2(k)(p1k + p2k + p3k) s.t.
∑
k

R2(k)
[
pk2 −min

k̃

pk̃2

pk̃1
pk1

]
= ∆21 + min

k̃

pk̃2

pk̃1
∆12.

(Note p1k := p1 × pk1 .) The minimum is achieved when

R2(k) =
(

∆21 + min
k̃

pk̃2

pk̃1
∆12

)/(
pk2 −min

k̃

pk̃2

pk̃1
pk1

)
if k = argmin

p1k + p2k + p3k

pk2 −mink̃
pk̃
2

pk̃
1
pk1

, 0 otherwise.

Thus, for k = argmin(p1k + p2k + p3k)/(pk2 −mink̃
pk̃
2

pk̃
1
pk1),

R1 = ∆12 + pk1

∆21 + mink̃
pk̃
2

pk̃
1

∆12

pk2 −mink̃
pk̃
2

pk̃
1
pk1

, R2 =
∆21 + mink̃

pk̃
2

pk̃
1

∆12

1− pk
1
pk
2

mink̃
pk̃
2

pk̃
1

, R3 = ∆32 + pk3

∆21 + mink̃
pk̃
2

pk̃
1

∆12

pk2 −mink̃
pk̃
2

pk̃
1
pk1

.

7Note ρ1p
k
1 + ρ3p

k
3 + γpk2 ≥ 0 ⇔ γ ≥ −

ˆ
ρ1p

k
1/p

k
2 + ρ3p

k
3/p

k
2

˜
.
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A.7 Proof that B is invertible

Let A(θi,θ
′
i) be the (θi, θ′i)-th column of matrix A, Bθ be the θ-th column of matrix B, and xBθ be the

θ-th row of xB . Since xN = 0, (15) becomes∑
θ̃

Bθ̃xBθ̃ = b.

After increasing γi(θ
j
i , θ

k
i ) up to the maximum, we have

A(θj
i ,θ

k
i )γi(θ

j
i , θ

k
i ) +

∑
θ̃ 6=θ

Bθ̃ξBθ̃ = b

where ξB is the value changed from xB by the change in γi(θ
j
i , θ

k
i ), and θ is such that the θ-th row of

xB hits zero the earliest.

From the two equations, we derive

A(θj
i ,θ

k
i )xN (θj

i ,θ
k
i ) +

∑
θ̃ 6=θ

Bθ̃(ξBθ̃ − xBθ̃)−B
θxBθ = 0.

If γi(θ
j
i , θ

k
i ) > 0, xBθ > 0 (otherwise, xBθ cannot be the row of xB that becomes zero). Thus, A(θj

i ,θ
k
i )

is spanned by {Bθ̃ : θ̃ ∈ Θ}, and the coefficient for Bθ is non-zero. As long as {Bθ̃ : θ̃ ∈ Θ} is a basis,

{Bθ̃ : θ̃ 6= θ} ∪ {A(θj
i ,θ

k
i )} is a basis too. Therefore, the replacement of Bθ with A(θj

i ,θ
k
i ) makes matrix

B invertible as long as B was invertible before the replacement. On the other hand, if xN (θj
i ,θ

k
i ) = 0,

consider the situation of making xN (θj
i ,θ

k
i ) = ε > 0. Then ξBθ will become a strictly negative number.

Thus we can show in the same way that A(θj
i ,θ

k
i ) is spanned by (Bθ̃)θ̃∈Θ, and the coefficient for Bθ is

non-zero. Thus B is again invertible after the replacement.

Since the algorithm starts with B = I, B remains invertible along the ongoing steps.
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