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Abstract

Models of ambiguity aversion have recently found many applications in

dynamic settings. This paper shows that the modeling choices that are being

made in the domain of ambiguity aversion influence the set of modeling choices

available in the domain of timing attitudes, in particular the preferences for the

timing of the resolution of uncertainty, as defined by the classic work of Kreps

and Porteus (1978). The main result of the paper is that the only model of

ambiguity aversion that exhibits indifference to timing is the maxmin expected

utility of Gilboa and Schmeidler (1989). This paper also examines the structure

of the timing nonindifference implied by the other commonly used models of

ambiguity aversion. The interdependence of ambiguity and timing that this

paper identifies is of interest both conceptually and practically—especially for

economists using these models in applications.
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1 Introduction

The concept of uncertainty, or ambiguity, has been studied by economists since the

work of Keynes (1921) and Knight (1921). As opposed to risk, where the probability

is well-specified, ambiguity is characterized by the inability of the decision maker

to formulate a single probability or by his lack of trust in any unique probability

estimate. As demonstrated by Ellsberg (1961), people often make choices that cannot

be justified by a unique probability, exhibiting a preference for risky choices over those

involving ambiguity. Ambiguity aversion has been a central topic in decision theory

in the past years, which has resulted in many elegant formal models.1

Models of ambiguity aversion have recently found many applications in dynamic

contexts to questions in finance and macroeconomics.2 Their use typically involves a

recursive formulation where uncertainty is resolving over time and a particular model

of ambiguity aversion is used in each period to assess the uncertain continuation

values.

In general, in situations where uncertainty does not resolve in one shot the deci-

sion maker may have an intrinsic preference for the timing of resolution of uncertainty

and distinguish between prospects based on the times at which their uncertainty re-

solves. The standard model of discounted expected utility satisfies the reduction of

compound lotteries and therefore exhibits no such intrinsic preference for timing.

Choice models in which timing is important were first formally studied in the con-

text of risk by Kreps and Porteus (1978) and subsequently extended and successfully

applied to asset pricing.3 In these models the nonindifference to timing is obtained

by assuming a nonlinear aggregation of the utility of the present consumption and

of the continuation value.

1The seminal theoretical contribution is Schmeidler (1989), followed by Gilboa and Schmeidler
(1989), Epstein (1999), Epstein and Zhang (2001), Ghirardato and Marinacci (2002), Klibanoff,
Marinacci, and Mukerji (2005), Maccheroni, Marinacci, and Rustichini (2006a), Cerreia-Vioglio,
Maccheroni, Marinacci, and Montrucchio (2008), and others.

2See, e.g., Epstein and Wang (1994), Maenhout (2004), Chen and Epstein (2002), Karantounias,
Hansen, and Sargent (2007), Kleshchelski and Vincent (2007), Ju and Miao (2007), Collard, Mukerji,
Sheppard, and Tallon (2008), Barillas, Hansen, and Sargent (2009), Chen, Ju, and Miao (2009),
Benigno and Nisticò (2009), Ilut (2009), and Drechsler (2009).

3See, e.g., Epstein and Zin (1989, 1991), Weil (1989, 1990), and Tallarini (2000), among others.
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This paper shows that even without a nonlinear aggregator, that is, with standard

discounting, most models of ambiguity aversion result in timing nonindifferences, i.e.,

agents with such preferences would be willing to pay a premium for earlier resolution

of uncertainty. The main result shows that the only ambiguity averse model which

induces indifference to timing is the maxmin expected utility of Gilboa and Schmei-

dler (1989). This result means that assuming any other model of ambiguity aversion

will result in dynamic preferences that exhibit nonindifference to timing. This pa-

per examines the structure of this nonindifference for the most popular classes of

preferences used in applications.

The interdependence of ambiguity and timing that this paper identifies is of in-

terest both conceptually and practically, especially for economists using these models

in applications because it means that the modeling choices that are being made in

the domain of ambiguity attitudes influence the set of modeling choices available in

the domain of timing attitudes. In applied work, holding a particular model of ambi-

guity constant, the degree of ambiguity aversion needed to fit the model to the data

will imply a certain premium that the agent is willing to pay for earlier resolution of

uncertainty. The magnitude of this premium will depend on the model in question

and may be helpful in guiding modelling choices, directing attention toward models

implying reasonable values of the premium.

The paper procedes as follows: Section 2 defines static ambiguity averse prefer-

ences; Section 3 defines discounted ambiguity preferences and defines the notion of

preference for earlier resolution of uncertainty; Section 4 presents the main results

of the paper, which show that the choice of the ambiguity model has strong conse-

quences for the resulting preferences for timing; Section 5 compares these results to

the known results for choice over lotteries; finally, Section 6 studies a more general

model with a nonlinear aggregator and shows that the timing effects identified in

Section 4 can be replicated by a nonlinear aggregator, but only to a limited extent.
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2 Models of Ambiguity and Ambiguity Attitudes

Let S be the set of states of nature, Σ be an algebra of events, and X be a set of

consequences, assumed to be a convex subset of a real vector space. An act is a

Σ-measurable simple function f : S → X; the set of such acts is denoted F . Let

B0(Σ) denote the set of all real-valued Σ-measurable simple functions and B0(Σ, K)

be the set of all such functions that take values in some set K ⊆ R. Let ∆(Σ) be

the set of all finitely additive probability measures on (S,Σ).

Preferences studied in this paper are represented by

V (f) = I(u(f)) (1)

where u : X → R is an affine utility function, and I : B0

(
Σ, u(X)

)
→ R is a

functional that represents the decision maker’s “beliefs” by aggregating the utility

values over states. It will be maintained throughout that u is unbounded, more

specifically, that u(X) = R or u(X) = R+.

The most basic example of such a functional is coming from the familiar subjective

expected utility preferences, where for each ξ ∈ B0

(
Σ, u(X)

)
the functional is of the

form I(ξ) =
∫
ξ dp for some probability measure p ∈ ∆(Σ). Another well-known

example is the functional associated with the Gilboa and Schmeidler’s (1989) maxmin

expected utility (MEU) preferences, where I(ξ) = minp∈C
∫
ξ dp for some convex and

weak∗-closed set of measures C ⊆ ∆(Σ). Other important models include:

1. Choquet expected utility preferences (Schmeidler, 1989), where I(ξ) =
∫
ξ dυ

for some convex capacity υ : Σ→ [0, 1].

2. Second order expected utility preferences (Neilson, 1993; Nau, 2006; Ergin and

Gul, 2009), where I(ξ) = φ−1
( ∫

φ(ξ) dp
)

for some strictly increasing and con-

cave function φ : u(X)→ R.

3. Smooth ambiguity preferences (Klibanoff et al., 2005; Seo, 2008; see also Segal,

1987), where I(ξ) = φ−1
( ∫

∆(Σ)
φ(
∫
ξ dp) dµ(p)

)
for some strictly increasing and

concave function φ : u(X)→ R and a Borel probability measure µ on ∆(Σ).
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4. Variational preferences (Maccheroni et al., 2006a), where I(ξ) = minp∈∆(Σ)

∫
ξ dp

+c(p) for some convex and weak∗-lower semicontinuous function c : ∆(Σ) →
[0,∞].

5. Multiplier preferences (Hansen and Sargent, 2001; Strzalecki, 2008) with I(ξ) =

minp∈∆(Σ)

∫
ξ dp + θR(p ‖ q), where R(p ‖ q) is the relative entropy of p with

respect to some fixed countably additive and nonatomic measure q ∈ ∆(Σ) and

a parameter θ ∈ (0,∞].

6. Confidence preferences (Chateauneuf and Faro, 2008), defined for u(X) = R+,

where for some quasiconcave and weak∗-upper semicontinuous function ϕ :

∆(Σ)→ [0, 1] and a parameter α ∈ (0, 1), I(ξ) = min{p∈∆(Σ)|ϕ(p)≥α}
1

ϕ(p)

∫
ξ dp.4

All of these examples feature a functional I that is continuous (in the supnorm

topology), monotonic (i.e., I(ξ) ≥ I(ζ) whenever ξ(s) ≥ ζ(s) for all s ∈ S), normal-

ized (I(k) = k for all k ∈ u(X), interpreted as constant functions), and quasiconcave

(I(αξ + (1− α)ζ) ≥ min{I(ξ), I(ζ)}). The last property corresponds to the famous

uncertainty (or ambiguity) aversion axiom of Schmeidler (1989), which postulates

that the decision maker does not like variability of payoff across states.

Preferences that can be represented by a belief functional I with such properties

are called uncertainty averse preferences.5 This representation of preferences makes

it convenient to study attitudes toward ambiguity. A decision maker has constant

absolute ambiguity aversion6 if I(ξ + k) = I(ξ)+k for all k ∈ u(X) and ξ, ξ+k ∈
B0

(
Σ, u(X)

)
. The subclass of uncertainty averse preferences with this property is

precisely the class of variational preferences. Similarly, a decision maker has constant

relative ambiguity aversion if I(bξ) = bI(ξ) for all b > 0 and ξ ∈ B0

(
Σ, u(X)

)
. When

u(X) = R+ the subclass of uncertainty averse preferences with this property is the

4An extension of these preferences to the case of u(X) = R was studied by Cerreia-Vioglio et al.
(2008), see their Theorem 21.

5In a recent paper Cerreia-Vioglio et al. (2008) show that I can be written as I(ξ) =
minp∈∆(Σ)G(

∫
ξ dp, p) for some quasiconvex function G : R × ∆(Σ) → R that is increasing in its

first argument. The results in this paper do not depend on this (very interesting) representation.
6See Proposition 3 of Grant and Polak (2008) and also Definition 6 of Klibanoff et al. (2005).
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class of confidence preferences.7 Although all of the above classes of preferences

have been behaviorally characterized by axioms imposed on the preference relation,

the results of this paper are stated directly in the language of representations. All

the results obtained in this paper can nonetheless be expressed in the language of

preferences, a task which, for the sake of brevity, will not undertaken here.

3 Temporal Resolution of Uncertainty

The purpose of this section is to define formally what it means for the decision maker

to care about the timing of uncertainty. In order to do so, a model will be studied

where uncertainty is dated by the time of its resolution: in each period there is a

state space S and the payoff at time t may depend on the realization of the period t

uncertainty and/or uncertainty that has already resolved in previous periods. This

model mirrors Kreps and Porteus’s (1978) framework with the difference that here

uncertainty is subjective and preferences may not be expected utility.8 This recursive

framework is also used in finance and macroeconomics, where in each period S is the

set of possible “shocks”.

Formally, time is discrete and varies over T = {0, . . . , T}. The set of states

of the world is Ω = ST . Information arrival is modeled as the naturally defined

filtration {Gt}t∈T where G0 = {∅,Ω} and for t = 1, . . . , T Gt = Σt ⊗ {∅, S}T−t is the

product sigma algebra of t copies of Σ and T − t copies of the trivial sigma algebra.

Thus, at time t the decision maker knows the realizations of uncertainty up to time

t, but is ignorant about the future. For any ω = (s1, . . . , sT ) let ωt = (s1, . . . , st)

be the history of observations after time t. The consumption plans are modeled as

finite-ranged X-valued adapted processes h = (h0, h1, . . . , hT ), where ht : Ω → X is

Gt-measurable for each t ∈ T . Let H denote the set of all consumption plans. The

family of relations {%t,ω}(t,ω)∈T ×Ω on H describes agent’s conditional preferences.

7As the intersection of both classes, maxmin expected utility preferences are characterized by
both of those properties.

8Epstein and Zin (1989), Chew and Epstein (1989), Segal (1990), Grant, Kajii, and Polak
(1998), and Grant, Kajii, and Polak (2000) study nonexpected utility preferences in the objective
risk framework of Kreps–Porteus. Section 5 compares those findings to the results obtained here.
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3.1 Discounted uncertainty averse preferences

Definition 1 (Discounted uncertainty averse preferences). A family {%t,ω}(t,ω)∈T ×Ω

has a discounted uncertainty averse representation with (β, I, u) if it is represented by

a family of functionals Vt : Ω×H → R defined recursively by VT (ω, h) = u(hT (ω)),

and for t < T

Vt(ω, h) = u
(
ht(ω)

)
+ βI

(
Vt+1

(
·, h
))
, (2)

where u : X → R is affine, β ∈ (0, 1), and I : B0

(
Σ, u(X)

)
→ R is normalized,

monotone, continuous, and quasiconcave.9

Note that Vt+1(·, h) is Gt+1-measurable for each h ∈ H; for this reason, in period t

Vt+1

(
·, h
)

defines an element of B0

(
Σ, u(X)

)
, which represets the uncertainty about

the period t+1 continuation value that the decision maker faces at period t, knowing

the history of realizations ωt.

Discounted uncertainty averse preferences include as special cases most of the

models used in applications10 but in general they allow for more flexible models of

ambiguity aversion, as described in Section 2.11

3.2 Attitudes toward timing of resolution of uncertainty

For any f : S → X define a Gt-measurable act f̌t : Ω→ X by f̌t(s1, . . . , sT ) = f(st);

that is, the act f̌t is a copy of the act f that resolves at time t, i.e., that depends

only on the t-th component of the state space. Intuitively, given any f ∈ F the act

f̌t is equally uncertain, but resolves earlier than f̌t+1. This notion is now used to

rank consumption plans.

9The results of this paper hold also under the often used alternate specification of the recursion
Vt(ω, h) = u

(
ht(ω)

)
+ I
(
βVt+1

(
·, h
))

.
10For example the time consistent dynamic variational preferences of Maccheroni, Marinacci,

and Rustichini (2006b) and recursive maxmin expected utility preferences of Epstein and Schneider
(2003b), as well as the recursive smooth ambiguity preferences of Klibanoff, Marinacci, and Mukerji
(2009)

11Alternative, nonrecursive, methods of extending models of ambiguity aversion to dynamic set-
tings include the dynamically consistent updating rules investigated by Hanany and Klibanoff (2007,
2008) and the model of sophisticated dynamic choice studied by Siniscalchi (2006).
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Fix a node (t, ω) and suppose that the only uncertainty that the decision maker

faces is about the period t+2 payoff, i.e., only ht+2 is a non-degenerate act. Consider

two scenarios. In the first one, the uncertainty resolves early, that is the decision

maker learns the realizations of ht+2 already in period t+1. Formally, let ht+2 = f̌t+1

for some f ∈ F .

Figure 1: Uncertainty resolves today

In the second scenario, the uncertainty resolves late, that is the decision maker

learns the realizations of ht+2 only in period t + 2. Formally, let ht+2 = f̌t+2 for the

same f ∈ F as above.

Figure 2: Uncertainty resolves tomorrow

Definition 2. A consumption plan h resolves earlier than h′, denoted h = h′, if and

only if there exists f ∈ F , t ∈ {0, 1, . . . , T − 2}, and x0, . . . , xt+1, xt+3, . . . , xT ∈ X
such that hj = h′j = xj for all j 6= t+ 2, ht+2 = f̌t+1, and h′t+2 = f̌t+2.
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A decision maker who always respects this order is said to display a preference

for earlier resolution of uncertainty.

Definition 3. The family of relations {%t,ω}(t,ω)∈T ×Ω exhibits a preference for earlier

resolution of uncertainty if and only if for all h, h′ ∈ H such that h = h′ the preference

h %t,ω h
′ holds for all t ∈ T and ω ∈ Ω. The notions of indifference to timing of

resolution of uncertainty and preference for later resolution of uncertainty are defined

analogously.

3.3 IID Ambiguity

The effects identified in this paper are also present in a formulation more general

than (2), which allows for different beliefs in each period.

Vt(ω, h) = u
(
ht(ω)

)
+ βIt

(
ω, Vt+1(·, h)

)
, (3)

However, in this more general model the attitudes toward timing of resolution of

uncertainty are confounded with changing beliefs. To see that, observe that given

any f : S → X the difference between the acts f̌t and f̌t+1 is twofold. First, these

two acts differ in the timing of their resolution. Second, they differ to the extent to

which the beliefs about the t-th copy of S differ from the beliefs about the t+1-th

copy of S. In formulation (3) a preference for f̌t over f̌t+1 is a result of the intrinsic

preference for earlier resolution of uncertainty “plus” the effect of changing beliefs.12

By imposing a “constant beliefs” assumption, known as IID ambiguity,13 formulation

(2) eliminates this latter effect and isolates the pure attitudes toward timing.

12This issue does not arise in the model of Kreps and Porteus (1978) because of the objective
nature of the probabilities in their formulation. The only difference between the analogues of f̌t

and f̌t+1 is the timing of their resolution because their probabilities are objectively the same.
13The notion of IID ambiguity was introduced by Chen and Epstein (2002) and Epstein and

Schneider (2003a) in the context of the maxmin expected utility model; it means that the uncer-
tainty that the decision maker faces in period t is identical to the uncertainty in period t+1, the
only distinguishing property being the timing of their resolution. Intuitively, a decision maker has
IID ambiguity if in each period he faces a new Ellsberg urn; his ex ante beliefs about each urn
are identical, but because he observes only one draw from each urn, he cannot make inferences
across urns and will not learn his way out of ambiguity, as opposed to a situation where he observes
repeated sampling (with replacement) from the same urn. (The failure of inference in such settings

9



4 Discounted preferences and timing attitudes

This section takes as given a family of discounted uncertainty averse preferences

{%t,ω}(t,ω)∈T ×Ω, defined by expression (2), and examines the relationship between

the attitudes toward ambiguity, as described in Section 2, and the attitudes toward

timing of resolution of uncertainty, as described in Section 3. The main message

is that the modeling choices in the domain of ambiguity have strong consequences

for the resulting attitudes toward timing. The starkest manifestation of this inter-

dependence is Theorem 1, which says that the only way to ensure indifference to

timing is by using the maxmin expected utility model. This means that assuming

any other model of ambiguity aversion will result in a family of preferences that

exhibits nonindifference to timing. The subsequent theorems examine the structure

of this nonindifference implied by models of ambiguity other than MEU.

Theorem 1. A family of dynamic uncertainty averse preferences {%t,ω}(t,ω)∈T ×Ω

satisfies indifference toward timing of resolution of uncertainty if and only if I is a

MEU functional.

The next theorem asserts that variational preferences exhibit uniform attitudes

toward timing. They all display a preference for earlier resolution of uncertainty,

the only “knife-edge” case of indifference being the class of maxmin expected utility

preferences.

Theorem 2. If {%t,ω}(t,ω)∈T ×Ω is a family of dynamic variational preferences, then

{%t,ω}(t,ω)∈T ×Ω satisfies preference for earlier resolution of uncertainty.

The multiplicative analog of variational preferences—confidence preferences—

exhibits the same behavior, provided that u(X) = R+. In contrast, when u(X) = R,

relative ambiguity aversion typically results in nonuniform attitudes toward timing.

In this case, the only subclass with uniform attitudes are maxmin expected utility

preferences.

is known in econometrics as the problem of incidental parameters, see, e.g., Neyman and Scott,
1948).
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Theorem 3. Suppose that {%t,ω}(t,ω)∈T ×Ω is a family of dynamic ambiguity averse

preferences that satisfy constant relative ambiguity aversion.

(i) If u(X) = R+, i.e., {%t,ω}(t,ω)∈T ×Ω are dynamic confidence preferences, then

{%t,ω}(t,ω)∈T ×Ω satisfies preference for earlier resolution of uncertainty.

(ii) If u(X) = R and if {%t,ω}(t,ω)∈T ×Ω displays a preference for earlier resolution

of uncertainty, then {%t,ω}(t,ω)∈T ×Ω is a recursive multiple priors preference.

The results so far show that the variational and confidence preferences always

display a preference for earlier resolution of uncertainty, while the constant relative

ambiguity aversion preferences always display a nonuniform attitude toward timing

of uncertainty (if u(X) = R). The next two important classes of preferences behave

differently: for some values of parameters they display a preference for earlier resolu-

tion of uncertainty, while for others they display nonuniform attitudes. The next two

theorems explore these conditions. First, Theorem 4 characterizes a subclass of sec-

ond order expected utility preferences that display a preference for earlier resolution

of uncertainty.

Theorem 4. Suppose that {%t,ω}(t,ω)∈T ×Ω is a family of dynamic second order ex-

pected utility preferences with a twice differentiable function φ.

(i) If u(X) = R, it displays a preference for earlier resolution of uncertainty if

and only if there exists a real number A ≥ 0 such that −φ′′(a)
φ(a)
∈ [βA,A] for all

a ∈ R.

(ii) If u(X) = R+, it displays a preference for earlier resolution of uncertainty if

and only β
[
− φ′′(βa+k)

φ′(βa+k)

]
≤
[
− φ′′(a)

φ′(a)

]
for all a, k ∈ R+.

The condition from part (i) of the theorem is stronger than the condition from

part (ii). They both permit constant absolute ambiguity aversion14; additionally the

14Constant absolute ambiguity aversion corresponds to the intersection of this class of preferences
with the class of variational preferences, which is precisely the class of the multiplier preferences;
see Strzalecki (2008). The fact that those preferences satisfy a preference for earlier resolution of
uncertainty follows already from Theorem 2.
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condition from part (ii) permits constant relative ambiguity aversion, i.e., φ(a) = aγ

for some γ ∈ (0, 1).15

Finally, Theorem 5 shows that the same conditions as in Theorem 4 are sufficient

for preference for earlier resolution of uncertainty in the class of smooth ambigu-

ity preferences. Under an additional assumption it is possible to show that these

conditions are also necessary.16

Assumption 1. S is finite with cardinality n and that the support of the measure

µ is finite with cardinality m. For j = 1, . . . ,m let each measure pj ∈ suppµ be

represented as a row vector in Rn and let M be an m × n matrix of those vectors

stacked on top of each other. The matrix M has rank m.

Theorem 5. Suppose that {%t,ω}(t,ω)∈T ×Ω is a family of dynamic smooth ambiguity

preferences with a twice differentiable function φ.

(i) If u(X) = R, it displays a preference for earlier resolution of uncertainty if

there exists a real number A ≥ 0 such that −φ′′(x)
φ(x)
∈ [βA,A] for all x ∈ R.

(ii) If u(X) = R and if it satisfies Assumption 1 and displays a preference for

earlier resolution of uncertainty then there exists a real number A ≥ 0 such

that −φ′′(x)
φ(x)
∈ [βA,A] for all x ∈ R.

(iii) If u(X) = R+, it displays a preference for earlier resolution of uncertainty if

β
[
− φ′′(βa+k)

φ′(βa+k)

]
≤
[
− φ′′(a)

φ′(a)

]
for all a, k ∈ R+.

(iv) If u(X) = R+ and if it satisfies Assumption 1 and displays a preference for

earlier resolution of uncertainty then β
[
− φ′′(βa+k)

φ′(βa+k)

]
≤
[
− φ′′(a)

φ′(a)

]
for all a, k ∈

R+.

15Constant relative ambiguity aversion corresponds to the intersection of this class of preferences
with the class of confidence preferences. The fact that those preferences satisfy a preference for
earlier resolution of uncertainty follows already from Theorem 3 (i).

16It is not known whether these conditions are necessary in general. Likewise, it is not known
whether uncertainty aversion (quasiconcavity of I) implies the concavity of φ (although the converse
is always true).
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5 Comparison to Choice over Lotteries

5.1 Intertemporal Elasticity of Substitution

The model of Kreps and Porteus (1978) allows for a separation between the elasticity

of substitution between states and between time periods. However, in that model

the difference betwen these two elasticities is directly related to the strength of the

preference for timing of resolution of uncertainty. In other words, the three features:

intertemporal elasticity of substitution, elasticity of substitution between states, and

preference for timing of resolution of uncertainty are interdependent; roughly speak-

ing, knowing two of them is sufficient to determine the third. For this reason, the

Kreps–Porteus model may be seen as too restrictive because it does not allow enough

freedom to specify the three parameters independently.

To see that, suppose that u(x) = xα for some α ∈ (0, 1). Consider first a dis-

counted second order expected utility model, with φ(x) = xρ for some ρ ∈ (0, 1].

This constitutes a (subjective) analog of the Kreps–Porteus model. In this model,

the intertemporal elasticity of substitution is equal to (1 − α)−1, whereas the elas-

ticity of substitution between states is equal to (1 − αρ)−1. As long as these two

are different, i.e., as long as ρ 6= 1, the decision maker will not be indifferent toward

timing of resolution of uncertainty.17

From this point of view, dynamic ambiguity models allow more flexibility. In

particular, a discounted MEU model allows for a separation of the three features.

Indifference to timing is guaranteed by Theorem 1, while the intertemporal elasticity

of substitution is (1 − α)−1, which is not identically equal to the elasticity of sub-

stitution between states. The latter varies between zero and (1 − α)−1 depending

on the act at which it is computed. This shows that it is possible to drive a wedge

between the two elasticities without forcing the timing nonindifference.

17According to Theorem 1, the decision maker displays an indifference to the timing of resolution
of uncertainty if and only if I is MEU, The only intersection of MEU and second order expected
utility preferences are expected utility preferences, i.e., ρ = 1.
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5.2 Timing Attitudes

Dynamic models of ambiguity may be seen as more flexible than those of risk for yet

another reason. As Theorem 1 of Chew and Epstein (1989) shows, when preferences

are defined over lotteries rather than acts, indifference to timing implies that the

certainty equivalent (the counterpart of the functional I in their model) has to be

expected utility. In contrast, Theorem 1 of this paper shows that in the domain of

acts the class of preferences indifferent to timing is larger—it is precisely the MEU

class.

Even more restrictive is the fact that most of the known departures from expected

utility in the risk domain induce a nonuniform attitude toward timing (much like the

constant relative ambiguity aversion preferences of Theorem 3 (ii)). Proposition 1 of

Grant et al. (2000) shows that (if preferences are rank-dependent or satisfy between-

ness) expected utility is a necessary consequence of preference for earlier resolution

of uncertainty.18 In contrast, Theorems 2–5 of this paper show that in the domain of

acts the class of such preferences is larger—it includes all variational and confidence

preferences, as well as certain second order expected utility and smooth ambiguity

preferences.

An illustrative case in point is rank-dependent expected utility (RDEU) of Quig-

gin (1982) and Yaari (1987) in which probability distributions are distorted by a

transformation function. When the preferences are defined on acts, assuming that

the probability transformation function is concave, this model reduces to Choquet

expected utility with a convex capacity—a special case of MEU—and thus satisfies

timing indifference. On the other hand, when the preferences are defined on lotter-

ies the aforementioned results imply nonindifference (and nonuniform attitude) to

timing.

It should be stressed that these differences are not a consequence of the con-

ceptual distinction between risk and ambiguity, but rather they are caused by the

18More precisely, Proposition 1 of Grant et al. (2000), as well as Theorem 1 of Chew and Epstein
(1989) allow for the certainty equivalent in each time period to differ and show that all but the
first or last certainty equivalents have to be EU. These results imply the above statements in the
context of a model with a constant certainty equivalent, like the one here.
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dissimilarity of the two choice domains. In particular, the definition of early res-

olution (relation =) in the subjective domain is less restrictive than in the model

with objective probabilities. This is caused by the fact that in the objective setting

earlier resolution is defined through probability mixtures of lotteries, while in the

subjective setting the—less flexible—eventwise mixtures are used. For this reason,

although RDEU does not preserve the indifferences to timing for all comparable pairs

of temporal lotteries in the objective domain, it does so in the subjective domain

because there are fewer such =-comparable pairs.

6 Recursive preferences and timing attitudes

A more general class of preferences can be defined by relaxing the standard discount-

ing assumption implicit in expression (2).

Definition 4 (Recursive uncertainty averse preferences). A family {%t,ω}(t,ω)∈T ×Ω

has a recursive uncertainty averse representation with (W, I, v) if it is represented by

a family of functionals Vt : Ω×H → R defined recursively by VT (ω, h) = v(hT (ω)),

and for t < T

Vt(ω, h) = W

(
ht(ω), I

(
Vt+1(·, h)

))
, (4)

where v : X → R, the aggregator W : X ×D0 → R is continuous, strictly increasing

and unbounded in the second argument, and I : B0(Σ, D0) → R is normalized,

monotone, continuous, and quasiconcave.19

These preferences are a natural generalization of Koopmans (1960), Kreps and

Porteus (1978), and Epstein and Zin (1989) to subjective uncertainty.20 The dis-

counted preferences defined by (2) correspond to the special case of recursive prefer-

ences defined by (4) with W disc(x, γ) = u(x) + βγ and an affine function u : X → R.

19The set D0 is defined recursively by DT := v(X) and Dt := Dt+1 ∪
⋃

x∈X W (x,Dt+1).
20Other subjective extensions have been studied and axiomatized by Hayashi (2005), Klibanoff

and Ozdenoren (2007), and Skiadas (1998). Skiadas (1998) also studies attitudes toward timing by
assuming that preferences are defined over pairs consisting of a consumption plan and exogenously
given information in form of a filtration that the consumption plan is adapted to.
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In the model of Kreps and Porteus (1978), where I(ξ) =
∫
ξ dp, the standard dis-

counting aggregator W disc implicit in expression (2) characterizes indifference to

timing of resolution of uncertainty, while more general aggregators lead to nonindif-

ference (in particular, convexity of W in the second argument corresponds to the

case of preference for earlier resolution). The main result of this paper is that even

with standard discounting most models of ambiguity lead to timing nonindifference,

maxmin expected utility preferences being the only case of indifference to timing.

Thus, attitudes toward timing arise in a certain sense “endogenously”, without ex-

plicitly imposing them through a nonstandard aggregator W .

From this point of view, the aggregator, W, and the “belief functional”, I, are

responsible for the same phenomenon of timing nonindifference. This section studies

the extent to which W and I are substitutes. The main result is a characterization of

the class of preferences where the timing nonindifference resulting from a non-MEU

belief functional I is exactly the same as the one resulting from the nonstandard

aggregator W .

Consider a MEU preference with IMEU(ξ) = minp∈C
∫
ξ dp for some set of mea-

sures C. As established in Theorem 1, discounted MEU preferences are the only

ones that satisfy indifference to timing. In principle, there are two ways of obtaining

timing nonindifference: first, by changing the functional IMEU to some other uncer-

tainty averse functional I; second, by changing the standard discounting aggregator

W disc, implicit in expression (2), to a nonstandard aggregator W . The following

theorem characterizes the class of preferences where the first method is equivalent to

the second.

Theorem 6. Suppose that {%t,ω}(t,ω)∈T ×Ω is a family of recursive uncertainty averse

preferences with (W disc, I, u), u(X) = R, and there exists an essential event E ∈ Σ.21

It has a recursive uncertainty averse representation with (W, IMEU , v) if and only

if I(ξ) = minp∈C φ
−1
( ∫

φ(ξ) dp
)

for some strictly increasing and concave function

φ : R→ R and some convex and weak∗-closed set C ⊆ ∆(Σ). In this case IMEU(ξ) =

minp∈C
∫
ξ dp and W

(
x, d
)

= φ
(
u(x)+βφ−1(d)

)
for all x ∈ X and all d ∈ Range(φ).

21An event E is essential iff there exists k, k ∈ R such that k > I
(
kEk

)
> k.
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The class of preferences characterized by Theorem 6 generalizes both the MEU

preferences (with φ being an affine function) and second-order expected utility prefer-

ences (with C being a singleton). This is precisely the subclass of uncertainty averse

preferences for which W and I are perfect substitutes. The timing effects induced by

the non-MEU nature of the belief functional are exactly like the effects induced by

an appropriate choice of the aggregator. For any other uncertainty averse preference

this equivalence breaks down and the timing effects of I cannot be mimicked by W .

A Appendix: Proofs

Lemma 1. The family {%t,ω}(t,ω)∈T ×Ω displays a preference toward earlier resolution

of uncertainty if and only if I(βξ + k) ≥ βI(ξ) + k for all ξ ∈ B0

(
Σ, u(X)

)
and

all k ∈ u(X). The family {%t,ω}(t,ω)∈T ×Ω displays indifference toward timing of

resolution of uncertainty if and only if I(βξ+k) = βI(ξ)+k for all ξ ∈ B0

(
Σ, u(X)

)
and all k ∈ u(X).

Proof. Fix x0, . . . , xT ∈ X and f ∈ F . Let l := β0u(xt+3) + . . . + βT−t−3u(xT ).

Observe that

Vt(ω, (x0, . . . , xt+1, ft+1, xt+3, . . . , xT )) = u(xt)+βI

(
u(xt+1)+βI

(
u(ft+1(ωt+1, ·))+βl

))
.

Because ft+1 is Gt+1-measurable I
(
u(ft+1(ωt+1, ·))

)
= u(ft+1(ω)) = u(f(st+1)) for all

ω ∈ Ω, thus by denoting ζ := u(f),

Vt(ω, (x0, . . . , xt+1, ft+1, xt+3, . . . , xT )) = u(xt) + βI

(
u(xt+1) + β(ζ + βl)

)
. (5)

On the other hand,

Vt(ω, (x0, . . . , xt+1, ft+2, xt+3, . . . , xT )) = u(xt)+βI

(
u(xt+1)+βI

(
u(ft+2(ωt+1, ·))+βl

))
.
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Because ft+2 does not depend on ωt+1, I
(
u(ft+2(ωt+1, ·))

)
= I(u(f))). Thus,

Vt(ω, (x0, . . . , xt+1, ft+2, xt+3, . . . , xT )) = u(xt) + β

(
u(xt+1) + βI(ζ + βl)

)
. (6)

Suppose I displays a preference for earlier resolution of uncertainty. Then the

expression (5) is bigger than (6) for any choice of x0, . . . , xT ∈ X and ζ ∈ B0(Σ), in

particular such that u(xt+1) = k, and ζ = ξ + βl. The converse and the proof of the

statement about indifference follow similarly.

Lemma 2. Let Φ := φ(u(X)) and for each k ∈ u(X) define Fk : Φ → R by

Fk(γ) = φ
(
βφ−1(γ) + k

)
. Suppose that φ is twice differentiable. Then Fk is convex

for each k ∈ u(X) if and only if β
[
− φ′′(βa+k)

φ′(βa+k)

]
≤
[
− φ′′(a)

φ′(a)

]
for all a, k ∈ u(X).

Proof. Because φ is twice differentiable, φ−1 is twice differentiable. Convexity of Fk

for each k ∈ u(X) is equivalent to

F ′′k (γ) ≥ 0 for all k ∈ u(X) and γ ∈ Φ. (7)

A direct computation reveals that

F ′′k (γ) = φ′′
(
βφ−1(γ) + k

)[ β

φ′
(
φ−1(γ)

)]2

− φ′
(
βφ−1(γ) + k

) βφ′′(φ−1(γ)
)[

φ′
(
φ−1(γ)

)]3 .
Thus, F ′′k (γ) ≥ 0 iff β

[
− φ′′

(
βφ−1(γ)+k

)
φ′
(
βφ−1(γ)+k

) ] ≤ [− φ′′
(
φ−1(γ)

)
φ′
(
φ−1(γ)

) ].
Lemma 3. Let u(X) = R and Φ := φ(R) and for each k ∈ R define Fk : Φ→ R by

Fk(γ) = φ
(
βφ−1(γ) + k

)
. Suppose that φ is twice differentiable. Then Fk is convex

for each k ∈ R if and only if there exists A ≥ 0 such that −φ′′(a)
φ′(a)

∈ [βA,A] for all

a ∈ R.

Proof. Let a, b ∈ R. Define k := b− βa. By Lemma 2 convexity of Fk is equivalent

to

β

[
− φ′′(b)

φ′(b)

]
≤
[
− φ′′(a)

φ′(a)

]
for all a, b ∈ R. (8)

18



It is immediate that condition (8) is implied if there exists A ≥ 0 such that −φ′′(a)
φ′(a)

∈
[βA,A] for all a ∈ R. Conversely, let A := supb∈R

[
− φ′′(b)

φ′(b)

]
. The number A is finite

because otherwise condition (8) is violated by fixing a and letting the left hand side

diverge. Let A′ := infa∈R
[
− φ′′(a)

φ′(a)

]
. If A′ < βA, then find two real numbers such

that A′ < l′ < l < βA. There exist a, b ∈ R with
[
− φ′′(a)

φ′(a)

]
< l′ and lβ−1 <

[
− φ′′(b)

φ′(b)

]
.

Thus,
[
− φ′′(a)

φ′(a)

]
< l′ < l < β

[
− φ′′(b)

φ′(b)

]
. Contradiction.

A.1 Proof of Theorem 1

By taking k = 0 in Lemma 1 the indifference to timing of uncertainty implies that

I(βξ) = βI(ξ) for any ξ ∈ B0

(
Σ, u(X)

)
. It follows that I(βξ + k) = βI(ξ) + k =

I(βξ) + k for any ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X), which means that

I(ζ + k) = I(ζ) + k for any ζ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X). (9)

If u(X) = R, then I satisfies the definition of vertical invariance of (Maccheroni,

Marinacci, and Rustichini, 2004, see their Definition (iii) on p. 18).

Suppose that u(X) = R+ and that ζ ∈ B0

(
Σ, u(X)

)
and ζ + k ∈ B0

(
Σ, u(X)

)
for some k ∈ R; it follows that k ≥ − inf ζ. If k < 0, then I(ζ) = I((ζ + k) − k) =

I(ζ+k)−k, where the second equality follows from (9). Thus, I(ζ)+k = I(ζ+k) for

all 0 > k ≥ − inf ζ. This equality follows directly from (9) for k ≥ 0, thus I satisfies

the definition of vertical invariance of (Maccheroni et al., 2004, see their Defintion

(iii) on p. 18).

Hence, I is vertically invariant on B0(Σ, u(X) in both cases u(X) = R and

u(X) = R+. By Lemma 23 of Maccheroni et al. (2004) I is a niveloid and hence is

continuous. By Lemma 20 of Maccheroni et al. (2004) quasiconcavity of I implies

its concavity. In particular I(bξ) = I
(
bξ + (1 − b)0

)
≥ bI(ξ) + (1 − b)I(0) = bI(ξ)

for all ξ ∈ B0

(
Σ, u(X)

)
and all b ∈ (0, 1).

The next step of the proof establishes that I(bξ) = bI(ξ) for any ξ ∈ B0

(
Σ, u(X)

)
and for any b ∈ (0, 1). Fix ξ ∈ B0

(
Σ, u(X)

)
and suppose, toward contradiction, that

there exists b ∈ (0, 1) such that I(bξ) > bI(ξ). Observe that I(βnξ) = I(ββn−1ξ) =

19



βI(βn−1ξ) = · · · = βnI(ξ) for any n ∈ N. Choose n such that βn < b. For this n it

follows that βnI(ξ) = I(βnξ) = I
(
βn

b
bξ+ b−βn

b
0
)
≥ βn

b
I(bξ) > βnI(ξ). Contradiction.

As a consequence is positively homogeneous (homogeneity for b > 1 follows

trivially). Thus it satisfies the assumptions of Lemma 3.5 of Gilboa and Schmei-

dler (1989); therefore, there exists a closed and convex set C ⊆ ∆(S) such that

I(ξ) = minp∈C
∫
ξ dp for all ξ : S → R.

A.2 Proof of Theorem 2

By Lemma 1 the preference for earlier resolution of uncertainty is equivalent to

I(βξ + k) ≥ βI(ξ) + k for all ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X). By concavity of I,

I(βξ + k) = I(βξ + (1− β) k
1−β ) ≥ βI(ξ) + (1− β)I( k

1−β ) = βI(ξ) + k.

A.3 Proof of Theorem 3

(i): The functional I is concave because I(βξ+(1−β)ζ) = min{p∈∆(Σ)|ϕ(p)≥α}
1

ϕ(p)

∫
βξ+

(1−β)ζ dp = β 1
ϕ(p∗)

∫
ξ dp∗+(1−β) 1

ϕ(p∗)

∫
ζ dp∗ for some p∗ ∈ ∆(Σ) with ϕ(p∗) ≥ α.

This expression is then weakly bigger than βI(ξ)+(1−β)I(ζ), which proves concavity.

From concavity, it follows that I(βξ) = I
(
βξ+(1−β)0

)
≥ βI(ξ)+(1−β)I(0) = βI(ξ).

By Lemma 1 the preference for earlier resolution of uncertainty is equivalent to

I(βξ + k) ≥ βI(ξ) + k for all ξ ∈ B0(Σ,R+) and k ∈ R+. By concavity of I,

I(βξ + k) = I(βξ + (1− β) k
1−β ) ≥ βI(ξ) + (1− β)I( k

1−β ) = βI(ξ) + k.

(ii): Constant relative ambiguity aversion means that I(βξ) = βI(ξ) for all ξ ∈
B0(Σ). By Lemma 1 I(βξ + k) ≥ βI(ξ) + k for all ξ ∈ B0(Σ) and k ∈ R. Thus

I(βξ + k) ≥ βI(ξ) + k = I(βξ) + k for all ξ ∈ B0(Σ) and k ∈ R, which means that

I(ζ + k) ≥ I(ζ) + k for all ζ ∈ B0(Σ) and k ∈ R (10)

Suppose, anticipating a contradiction, that I(ζ + k) > I(ζ) + k for some ζ ∈ B0(Σ)

and k ∈ R. Then I(ζ+k) > I(ζ)+k = I
(
(ζ+k)−k

)
+k ≥ I(ζ+k)−k+k = I(ζ+k),

where the last inequality follows from (10). Contradiction. Thus I satisfies satisfies

the assumptions of Lemma 3.5 of Gilboa and Schmeidler (1989), so there exists a
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closed, convex set C ⊆ ∆(S) with I(ξ) = minp∈C
∫
ξ dp for all ξ : S → R.

A.4 Proof of Theorem 4

Let Φ := φ(u(X)). Preference for earlier resolution of uncertainty is equivalent to∫
φ(βξ+k) dp ≥ φ

(
βφ−1

(∫
φ(ξ) dp

)
+k

)
for all ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X).

(11)

For each k ∈ u(X) define Fk : Φ→ R by Fk(γ) = φ
(
βφ−1(γ)+k

)
. With this notation,

(11) becomes
∫
Fk
(
φ(ξ)

)
dp ≥ Fk

( ∫
φ(ξ) dp

)
for all ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X).

By letting ζ = φ(ξ), this is equivalent to∫
Fk
(
ζ
)

dp ≥ Fk
( ∫

ζ dp
)

for all ζ ∈ B0(Σ,Φ) and k ∈ u(X). (12)

Next, condition (12) is equivalent to convexity of Fk for all k ∈ u(X). To see that,

observe that sufficiency follows from Jensen’s inequality. Conversely, suppose that

(12) holds and find an event E ∈ Σ such that 0 < p(E) < 1, denoting α := p(E). For

any γ, γ′ ∈ Φ condition (12) applied to ζ = γEγ
′ implies that αFk(γ)+(1−α)Fk(γ

′) ≥
Fk(αγ + (1 − α)γ′) for each k ∈ u(X). By Theorem 88 of Hardy, Littlewood, and

Pólya (1952) for each k ∈ u(X) function Fk is convex (for any k the function Fk is

continuous). An application of Lemmas 2 and 3 leads to the desired conclusions.

A.5 Proof of Theorem 5

Let Φ := φ(R). By Lemma 1 preference for earlier resolution of uncertainty is

equivalent to∫
∆(Σ)

φ

(
β

∫
ξ dp+ k

)
dµ(p) ≥ φ

(
βφ−1

(∫
∆(Σ)

φ

(∫
ξ dp

)
dµ(p)

)
+ k

)
for all ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X).
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For each k ∈ u(X) define Fk : Φ→ R by Fk(γ) = φ
(
βφ−1(γ)+k

)
. With this notation

this condition becomes∫
∆(Σ)

Fk

(
φ(

∫
ξ dp)

)
dµ(p) ≥ Fk

(∫
∆(Σ)

φ(

∫
ξ dp) dµ(p)

)
for all ξ ∈ B0

(
Σ, u(X)

)
and k ∈ u(X).

By defining Υ := {χ : ∆(Σ)→ R | χ(p) = φ(
∫
ξ dp) for some ξ ∈ B0

(
Σ, u(X)

)
} this

condition which can be rewritten as∫
∆(Σ)

Fk(χ) dµ ≥ Fk

(∫
∆(Σ)

χ dµ

)
for all χ ∈ Υ and k ∈ u(X).

Sufficiency follows from Lemmas 2 and 3 and Jensen’s inequality. For necessity,

observe that under Assumption 1 the above condition is equivalent to

m∑
j=1

Fk
(
χj
)
µj ≥ Fk

( m∑
j=1

χjµj

)
for all χ ∈ Υ and k ∈ u(X),

where Υ = {χ ∈ Rm | χj = φ
(
(Mξ)j

)
for some ξ ∈

(
u(X)

)n} = {χ ∈ Rm | χj =

φ
(
ζj
)

for some ζ ∈ (u(X)
)m}. Taking ζ = (a, b, . . . , b) for all a, b ∈ u(X) ensures

that for all c, d ∈ Φ the set Υ includes all vectors of the form (c, d, . . . , d). Hence,

the preference for earlier resolution of uncertainty implies that

Fk(c)µ1 + Fk(d)(1− µ1) ≥ Fk(cµ1 + d(1− µ1)) for all c, d ∈ Φ.

By Theorem 88 of Hardy et al. (1952) for each k ∈ u(X) function Fk is convex (for

any k the function Fk is continuous). An application of Lemmas 2 and 3 leads to

the desired conclusions.

A.6 Proof of Theorem 6

Sufficiency is trivial. For necessity, assume that V̂t is the representation of {%t,ω

}(t,ω)∈T ×Ω in terms of (W disc, I, u) and let Ṽt be its representation in terms of (W, IMEU , v).
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First, fix x0, x1, . . . , xT−1 ∈ X and let h range over (x0, x1, . . . , xT−1, x) for x ∈ X.

Then V̂T (ω, h) = u(x), while ṼT (ω, h) = v(x). Because V̂T and ṼT represent the same

order %T,ω they have to be ordinally equivalent; thus, there exists a strictly increasing

function φ : R→ R such that v(x) = φ(u(x)) for all x ∈ X.

Second, fix x0, x1, . . . , xT−1 ∈ X and let h range over (x0, x1, . . . , xT−1, f̌T ) for

f ∈ F . Observe, that V̂T−1(ω, h) = u(xT−1) + βI(u(f)), while

ṼT−1(ω, h) = W
(
xT−1,min

p∈C

∫
v(f) dp

)
= W

(
xT−1,min

p∈C

∫
φ(u(f)) dp

)
.

Because V̂T−1 and ṼT−1 represent the same order, %T−1,ω, they have to be ordinally

equivalent; in particular, their restrictions to F have to be ordinally equivalent. Of

course the restriction of V̂T−1 is ordinally equivalent to I(u(f)) and the restriction of

ṼT−1 is ordinally equivalent to φ−1
(

minp∈C
∫
φ(u(f)) dp

)
. Observe that they coincide

on constant acts; for this reason it is possible to define induced preferences over

“utility acts”, B0(Σ). The representation of this preference induced by V̂T−1 is simply

I, while the representation induced by ṼT−1 is J(ξ) = φ−1
(

minp∈C
∫
φ(ξ) dp

)
. They

are both ordinally equivalent, so there exists a strictly increasing function ψ : R→ R
such that I(ξ) = ψ(J(ξ)) for all ξ ∈ B0(Σ). In particular, this must hold for all

constant utility acts: I(r) = ψ(J(r)) for all r ∈ R. However, I is normalized (by

assumption), whereas J is normalized (by direct verification). Thus, for all r ∈ R it

must be that r = I(r) = ψ(J(r)) = ψ(r); hence, ψ is identity and I ≡ J .

Now, recall that V̂T−1 and ṼT−1 are ordinally equivalent on X × F . For this

reason, there exists a strictly increasing function ϕ : R→ R such that

W
(
xT−1,min

p∈C

∫
φ(u(f)) dp

)
= ϕ

(
u(xT−1) + βI(u(f))

)
for all xT−1 ∈ X and all f ∈ F . Because I ≡ J it follows that W

(
xT−1, φ(I(u(f)))

)
=

ϕ
(
u(xT−1)+βI(u(f))

)
for all xT−1 ∈ X and all f ∈ F . This means thatW

(
x, φ(γ)

)
=

ϕ
(
u(x) + βγ

)
for all x ∈ X and all γ ∈ R. Hence, W

(
x, d
)

= ϕ
(
u(x) + βφ−1(d)

)
for

all x ∈ X and all d ∈ Range(φ).

Finally, fix x0, x1, . . . , xT−2 ∈ X and xT ∈ X such that u(xT ) = 0; let h range
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over (x0, x1, . . . , xT−2, f̌T−1, xT ) for f ∈ F . Observe that

V̂T−2(ω, h) = u(xT−2) + βI
(
V̂T−1

(
(ωT−1, ·), h

))
= u(xT−2) + βI

(
u(f)

)
.

Thus, V̂T−2 induces a quasiconcave order onB0(Σ) represented by ξ 7→ minp∈C
∫
φ(ξ) dp.

On the other hand,

ṼT−2 = W

(
xT−2, I

MEU
(
ṼT−1

(
(ωT−1, ·), h

)))
= ϕ

(
u(xT−2) + βφ−1

(
IMEU

(
ṼT−1

(
(ωT−1, ·), h

))))
= ϕ

(
u(xT−2) + βφ−1

(
IMEU

(
ϕ(u(f))

)))
Thus, ṼT−2 induces an order on B0(Σ) represented by ξ 7→ minp∈C

∫
ϕ(ξ) dp.

Because V̂T−2 and ṼT−2 are ordinally equivalent, the mappings ξ 7→ minp∈C
∫
φ(ξ) dp

and ξ 7→ minp∈C
∫
ϕ(ξ) dp represent the same quasiconcave order on F . Because

there exists an essential event E ∈ Σ by letting α := minp∈C p(E) it follows that

0 < α < 1. Both mappings induce mappings on the set {(k, k) ∈ R2 | k ≥ k}
by considering utility acts of the form kEk. These induced mappings are (k, k) 7→
αφ(k) + (1 − α)φ(k) and (k, k) 7→ αϕ(k) + (1 − α)ϕ(k); observe that they inherit

quasiconcavity. Standard arguments from expected utility theory imply that ϕ is an

positive affine transformation of φ. Because IMEUpreserves positive affine transfor-

mations, ϕ can be chosen to equal φ.

To show concavity of φ, for any k ∈ R consider the restriction of the mapping

(k, k) 7→ αφ(k) + (1− α)φ(k) to the set (−∞, k)× (k,∞). By Theorem 1 of Debreu

and Koopmans (1982), the function φ is continuous on (k,∞); hence it is continuous

on R in light of the arbitrary choice of k. By the Proposition of Yaari (1977), φ is a

concave function on (k,∞), hence it is concave on R in light of the arbitrary choice

of k.
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