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Abstract

We introduce a new class of infinite horizon altruistic stochas-
tic OLG model with capital and labor, but without commitment be-
tween overlapping generations. Under mild regularity conditions, for
economies with both bounded and unbounded state spaces, continuous
monotone Markov perfect Nash equilibria (MPNE) are shown to exist,
and form an antichain. For each such MPNE, we also construct cor-
responding stationary Markovian equilibrium invariant distributions.
We then show that for many parameterizations of our economies used
in applied work in macroeconomics, unique MPNE exist relative to the
space of bounded measurable function. We can then directly related
this result to those obtain by promised utility/continuation methods
based upon the work of Abreu, Pearce, and Stacchetti. As our results
are constructive, we can provide characterizations of numerical meth-
ods for approximating MPNE, and we construct error bounds. Finally,
a series of examples show potential applications and limitations of our
results.

1 Introduction and related literature

Over the last two decades, there has been a great deal of interest in studying
dynamic equilibrium models without commitment. Examples of this work
include models of sustainable plans, altruistic growth, Ricardian equivalence,
endogenous borrowing constraints, sovereign debt, monetary policy games,
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savings with hyperbolic discounting, and Ramsey taxation. A central issue
that has emerged in this work has been the question on developing tools
appropriate for characterizing the structure of the set of subgame perfect
equilibrium that arise in such economies. Many methodological propos-
als have been made. For example, beginning with the work of Kydland
and Prescott (1977, 1980) on time consistent optimal Ramsey taxation, and
continuing in many recent papers (e.g. Atkeson (1991), Chari and Kehoe
(1993), Sleet (1998), and Phelan and Stacchetti (2001) among others), the
”promised utility”approach to constructing subgame perfect equilibrium has
been proposed. In this method, one constructs a set of sustainable values
for each player in the game in a subgame perfect equilibrium by applying
strategic dynamic programming arguments.1 In related work, other have ap-
pealed to the use of traditional dynamic programming frameworks where the
(dynamic) incentive constraints introduce a recursive structure of the con-
straint side (in addition to the objective). In some cases, a direct approach
to constructing Markov perfect Nash equilibrium has been implemented (e.g,
see Amir (1989, 1996b, 2002, 2005), Curtat (1996), and Nowak (2006)).2 In
other cases, where worst equilibrium are easily defined, extended set of re-
cursive methods have been proposed (e.g. Marcet and Marimon (2009) and
Rustichini (1998)). Finally, appealing to the theory of generalized functions
and/or implicit function theorem, Harris and Laibson (2001) and Klein,
Krusell, and Ŕıos-Rull (2008) have proposed a new first order theory for
MPNE via an ”generalized” Euler equation approach.

Although these approaches are promising, each suffer also from well-
known technical limitations. For example, when using promised utility
methods, it is difficult to rigorously characterize the set of equilibrium pure
strategies that sustain the set of sustainable equilibrium values.3 When ap-
plying traditional dynamic programming methods, aside from the problem
of finding suitable function spaces to solve the resulting fixed point problems,
issues relating the structure and/or uniqueness of stationary Markovian equi-
librium arise. Further, when using the dynamic programming methods of
Marcet and Marimon (2009) and Rustichini (1998), punishment schemes
that sustain subgame perfect equilibrium must be imposed in an ad hoc
manner. More troubling, for Marcet and Marimon recursive saddlepoint
methods, important counterexamples exist. Finally, when applying GEE
methods, the question of relating the first order theory (and the assumed

1Its bears mentioning that in Kydland and Prescott’s original work, Markov perfect
Nash equilibrium were the focus. In this later work in promised utility methods, Markov
perfection was not necessarily the focus. For a interesting survey of strategic dynamic
programming methods, see the work of Pearce and Stacchetti (1997) and Sleet and Yeltekin
(2003).

2The recursive saddlepoint methods of Marcet and Marimon (2009), as well as the gen-
eralized dynamic programming methods of Rustichini (1998), can also be viewed abstractly
as within this tradition.

3Promised utility methods generally also need discounting.
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smoothness of equilibrium solutions) to the equilibrium value function that
solve agents dynamic programs in the game have yet to be rigorously devel-
oped.4 So the usefulness or applicability of these collections of methods is
still yet to be firmly established.

In this paper, we propose an extension of the approach first developed
in Amir (1996b) and Nowak (2006) to models of stochastic growth without
commitment. The class of stochastic intergererational altruism models in
their deterministic incarnation date back to the work of Phelps and Pollak
(1968), and have been studied extensively in the literature (see Amir (1996b)
and Nowak (2006) or references within). The model consists of a sequence
of identical generations, each living one period and deriving utility from its
own consumption and leisure, as well as the consumption and leisure of its
successor generation. Given the lack of commitment assumed between gen-
erations, the agents in this environment face a time-consistency problem as
each current generation has an incentive to deviate from a given sequence of
bequests, consume a disportionate amount of current bequests, leaving lit-
tle (or nothing) for subsequent generations. A key novelty of our collection
of stochastic game is that unlike all this existing work on stochastic ap-
proaches to strategic altruism, we introduce paternalistic altruism over two
objects (namely, the next generations consumption-leisure pair, as opposed
to just consumption). This extension is important as a great deal of work in
macroeconomics and dynamic public finance, for example, allow for agents
preferences to be defined over consumption and leisure, and allow for elastic
labor supply. Although the introduction of this feature does complicate mat-
ters a great deal relative to previous work on stochastic game approaches to
economies without commitment, we are still able to obtain existence results
under very general conditions, and also extend the uniqueness results known
for the this class of models without elastic labor supply. Therefore, we show
that by introducing a stochastic transition structure into the game’s state
variables, and allowing for more general forms of intergenerational altru-
ism than previously studied, we can still obtain a very tractible model of
strategic interaction among a countable collection of generations from the
viewpoint of existence and computation of MPNE.

We prove many interesting results about this class of models in the pa-
per. We first address the question of existence of MPNE. Although existence
of MPNE has been studied in versions of the model with inelastic labor sup-
ply in both the deterministic (e.g., Leininger (1986), Kohlberg (1976)) and
stochastic setting (Amir (1996b), Nowak (2006), Balbus, Reffett, and Woźny
(2009)), these proofs do not apply the case of elastic labor supply and more

4For example, Klein, Krusell, and Ŕıos-Rull (2008) apply the implicit function theorem
at the steady-state on the agents Euler equation to construct a local GEE. Unfortunately,
it is not proven that on the open set near this steady state, the Euler equation is sufficient
(as the equilibrium value function need not be concave). A similar issues arises in the first
order theory of Harris and Laibson (2001).

3



general paternalistic altruism. Next, given the importance of numerical char-
acterizations of MPNE in the existing macroeconomics literature, we next
address the question of sufficient conditions under which there exist globally
stable constructive iterative procedures for constructing unique MPNE. We
establish existence of MPNE in the space of continuous MPNE, while we
should give sufficient conditions guaranteeing uniqueness of MPNE relative
to the space of a Borel measurable strategies. Therefore, under our condi-
tions for uniqueness, our global stability result for iterative methods applies
relative to any initial Borel measurable function that is pointwise feasible
in the game. Additionally, we show conditions for existence of a unique
corresponding nontrivial invariant distribution. These results hold for both
the bounded or unbounded state space case. Finally, as our methods are
constructive, we are able to provide two approximation results that allow us
to construct error bounds of MPNE set, and provide a rigorous numerical
approach to approximating the unique MPNE. The paper concludes with
a number of examples which show both the applications and limitations of
our results.

Our results are important for a numerous additional reasons. First,
they provide a rigorous set of tools for quantitative study of stochastic
OLG economies with limited commitment, as we can easily tie our results
to the rigorous numerical characterization (including obtaining uniform er-
ror bounds) of MPNE in this class of economies. We actually provide two
such procedures. Second, the methods developed in this paper are general,
and, hence, can shed some new light on other dynamic economies with time
consistency issues (Atkeson 1991, Phelan and Stacchetti 2001). For exam-
ple, the methods can be extended to models with hyperbolic discounting
(Krusell and Smith 2003, Peleg and Yaari 1973)), or more general stochastic
discounted supermodular games Curtat (1996) (e.g., games of multigenera-
tional altruism with capital accumulation, (Amir 2002) fishwars and other
dynamic resource extraction problems (Levhari and Mirman 1980)), Ramsey
taxation problems, among others.

From a technical perspective, we build on the approach first proposed
in Balbus, Reffett, and Woźny (2009) to a similar partial commitment
economies with inelastic labor supply. That is, we again build a theory
of existence and computation based upon decreasing operators. Relative
to the existence question, we extend the tools first discussed in this earlier
work to a more general paternalistic altruism model. The existence result,
hence, can be seen as a contribution to the literature of monotone operators
similar to the one proposed (in case of elastic labor supply) by Coleman
(1997) and Datta, Mirman, and Reffett (2002), but only using decreasing
operators (for which the existence questions per fixed points are more com-
plicated), instead of increasing operators (where existence can be established
via various versions of Tarski’s theorem. Relative to uniqueness conditions,
our methods in this paper are also related to those in Balbus, Reffett, and
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Woźny (2009), where the fixed point theorems used here to show unique-
ness are base on geometrical properties of monotone mappings defined in
abstract cones found in the work of Guo and Lakshmikantham (1988) or
Guo, Cho, and Zhu (2004). But as is clear from the paper, the existence of
2-dimensional altruism greatly complicates the characterization of sufficient
conditions for global stability for the case of altruism over consumption and
leisure (relative to simply consumption as in this previous work).

Finally, given the two dimensional nature of the altruism in our model,
it bears mentioning the discrepancies between methods developed here or
in Balbus, Reffett, and Woźny (2009), as opposed to the ones applied by
Amir (1996b) or Nowak (2006). Specifically the operator used in our proof
of uniqueness theorem is defined on the set of bounded functions on the
states spaces and assigns for any expected utility of the next generation
its best response expected utility of a current generation. This operator
is hence a value function operator defined on the space of functions, whose
construction is motivated by the Abreu, Pearce, and Stacchetti (1990) (APS
henceforth) operator that could be defined (in this example) on the set of
subsets of the value functions. This is a striking difference to the ”direct
methods” applied by Amir (1996b) or Nowak (2006). As a result, on the one
hand, methods we develop in this paper can be seen as a generalization to
a two dimensional setting of an ”inverse procedure” linking choice variables
with their values proposed by Coleman (2000) (see also Nowak (2007)).
But on the other, and more important, hand our contribution can be seen
as a consistent way of sharpening the equilibrium characterization results
obtained by Kydland and Prescott (1980) or other correspondence-based
approaches to the study of time consistency problems. Specifically when
applying APS techniques, although existence arguments can be addressed
under very general conditions, the rigorous characterization of the set of
dynamic equilibrium policies (either theoretically or numerically) is typically
weak. Further, it has not yet been shown how to apply APS to obtain any
characterization of the long-run stochastic properties of stochastic games
(i.e., equilibrium invariant distributions and/or ergodic distributions). Once
again value function methods proposed in this paper should be seen as a way
of circumventing the mentioned APS predicaments.

The rest of the paper is organized as follows: in section 2 we present
the formal model and state our assumptions, in section 3 we state our main
results, and some examples of applications of our results. That last section
4 gives the proofs of all the theorems in the paper.

2 Economy and its model

We consider an infinite horizon stochastic game with a countable number
of players. The model is a dynastic production economy with capital and
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labor, each generation living one period, caring about the consumption and
leisure plans of the successor generation, but without commitment between
the generations. Time is discrete and indexed by t = 0, 1, 2, . . . For simplic-
ity, the size of each generation is assumed to be equal and normalized to
unity, and there is no population growth. Apart from elastically supplying
labor services 1 − l (where l denotes leisure), any given generation divides
also its (inherited) output s between current consumption c and investment
s − c for the next generation. The current generation receives utility from
both consumption and leisure U(c, l), as well as utility from its immediate
successor consumption and leisure v(c′, l′) (where (c′, l′) denotes the next
period consumption and leisure). There is a stochastic production technol-
ogy summarized by stochastic transition Q that maps current savings, labor
supply, and output (s− c, 1− l, s) into next period output s′.

Let K be a set of capital stock and L := [0, 1] be a set of possible
levels of labor. We will consider two cases for the capital stock, namely the
unbounded case (K := ℝ+) or the bounded case (K := [0, S], where S ∈
ℝ++). For a Markov stationary, measurable policy of the next generation for
consumption and leisure, ℎ := (ℎ1, ℎ2) where ℎ : K → K × L, the objective
function for the current generation is:

U(c, l;ℎ, s) := u(c, l) +

∫
K

v(ℎ1(y), ℎ2(y))Q(dy∣s− c, 1− l, s).

Before stating our assumptions let us introduce some notation: for s ∈ K
let A(s) := {(c, l) ∈ K × L, c ≤ s} and by Int(A(s)) denote interior of that
set. Let �0 be a probability measure on K concentrated at point zero. We
now state a series of assumptions on preferences and transition.

Assumption 1 (Preferences 1) We assume that:

∙ u : K×L→ ℝ+ is twice continuously differentiable, increasing in both
arguments, supermodular and concave function,

∙ u is strictly concave and strictly increasing on Int(A(s)) for s > 0,

∙ v : K × L → ℝ+ is increasing, measurable and
∫
K

v(s′, 1)�k(ds
′∣s) <

∞ for all k = 1, . . . ,m, where each �k is a measure from assump-
tions 3,4,5.

A special case of these preferences, we shall often consider the case of
additive separability between current consumption and leisure:

Assumption 2 (Preferences 2) given by:

∙ u(c, l) = u1(c) + u2(l), where u1 and u2 are twice continuously differ-
entiable functions, strictly increasing, strictly concave and
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∙ u1(0) = u2(0) = 0,

∙ for i = 1, 2 the function ui satisfies u′i(0
+) =∞,

∙ v : K ×L→ ℝ+ is increasing, measurable and
∫
K

v(s′, 1)�k(ds
′∣s) <∞

for all k = 1, . . . ,m.

The model of stochastic production we adopt is a special case of that
studied in a series of papers by Amir (1996a, 1996b, 1997), Nowak (2006),
and Magill and Quinzii (2009). For our purposes, it proves to be convenient
to adopt a simple mixing formulation for the stochastic transition structure
that is similar to that studied in Nowak (2006). We simply extend that
specification to the case of elastic labor supply, and the case of simple mixing
between two distributions:

Assumption 3 (Transition: general case) In the model without absorb-
ing state, let transition

∙ Q be given by:

Q(⋅∣s− c, 1− l, s) := g(s− c, 1− l)�1(⋅∣s) + (1− g(s− c, 1− l))�2(⋅∣s),

where the function g : K × L → [0, 1] is twice continuously differen-
tiable, increasing in both arguments, supermodular and concave,

∙ we have (∀c, l ∈ A(s)) g(c, 0) = g(0, l) = 0,

∙ g is strictly concave and strictly increasing on Int(A(s)) for s > 0,

∙ there exists a measure � such that each measure �k(⋅∣s) has a density
�k(⋅, s) with respect to a common measure �, i.e. can be described as
�k(A∣s) =

∫
A

�k(s
′, s)�(ds′).

For some of the results in the paper, it proves useful to consider slight
modifications to the assumption above on the stochastic transition Q for
production. In particular, we have two modifications that we shall often
use; one for the case that allows an absorbing state, the other with additive
separability. These two different case are given the following two assump-
tions.

Assumption 4 (Transition: absorbing state) In the model with absorb-
ing state, let transition

∙ Q be given by:

Q(⋅∣s− c, 1− l, s) :=

m∑
i=1

gi(s− c, 1− l)�i(⋅∣s) + g0(s− c, 1− l)�0(⋅),
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where for i = 1, . . . ,m functions gi : K × L → [0, 1] are twice con-
tinuously differentiable, increasing in both arguments, supermodular,

concave and
m∑
i=0

gk(⋅) = 1.

∙ for i = 1, . . . ,m we have (∀c, l ∈ A(s)) gi(c, 0) = gi(0, l) = 0,

∙ for i = 1, . . . ,m function gi is strictly concave and strictly increasing
on Int(A(s)) for s > 0,

∙ there exists a measure � such that each measure �k(⋅∣s) has a density
�k(⋅, s) with respect to a common measure �, i.e can be described as
�(A∣s) =

∫
A

�k(s
′, s)�(ds′).

Assumption 5 (Transition: separated variables) In the model with ab-
sorbing state, let transition

∙ Q be given by:

Q(⋅∣s− c, 1− l, s) := g(s− c, 1− l)�(⋅∣s) + (1− g(s− c, 1− l))�0(⋅),

where the function g : K × L → [0, 1] is of the form g(a, b) = g1(a) +
g2(b) and each gi is twice continuously differentiable, strictly concave
and strictly increasing on K,

∙ there exists a measure � such that �(⋅∣s) has a density �(⋅, s) with
respect to measure �, i.e. can be described as �(A∣s) =

∫
A

�(s′, s)�(ds′),

∙ moreover, the collection of the measures �(⋅∣s) is stochastically decreas-
ing with s on K.

Our assumption on preferences are standard, while assumptions on tran-
sition structure and state space require some comment. In related work by
Nowak (2006) or Balbus, Reffett, and Woźny (2009), the authors assume
that K is a compact interval in ℝ+, while in Amir (1996b), the author takes
the state space K = ℝ+. In particular, to show the existence of MPNE
using Amir (1996b) methods the assumption of unbounded state space is
very important (while this is not the case Nowak (2006)). In this paper,
we can work with either bounded and unbounded state spaces. One reason
in our work we allow for both bounded and unbounded state space cases
comes from an observation first made Balbus, Reffett, and Woźny (2009)
concerning the nondegeneracy of stationary Markov perfect equilibrium. In
particular, for the assumption of a bounded state space, existence of an ab-
sorbing state 0, strict monotonicity of g, and interiority of a MPNE implies
one ends up with a positive probability of reaching an absorbing state 0 each
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period; hence any Stationary Markov Equilibrium admits a trivial invariant
distribution. By allowing for unbounded state spaces, we can work out tran-
sitions with and without absorbing states, and obtain conditions where we
can avoid this outcome. We should also remark, in the existing literature,
very little attention has been focused on the structure of stationary Markov
equilibrium in the class of games we study (the one exception, being Bal-
bus, Reffett, and Woźny (2009) for the case of inelastic labor, and a more
restrictive form of intergenerational altruism.

Additionally, following Nowak (2006), our transition Q is a convex com-
bination of a finite number of measures �i (and in assumption 4 and 5 also
�0) depending jointly on the state s, as well as the decision variables s− c, l.
This type of transition structure for production has not been studied in the
existing literature. In particular, the functions gi are viewed as the ”weights”
placed on probability measures that govern the stochastic structure of pro-
duction. In what follows, we shall analyze cases with, and cases without an
absorbing state. The former case is obtained by taking one of the measures
(namely �0)) to be a delta Dirac measure concentrated at point zero. The
examples of transitions satisfying these assumptions (but without elastic la-
bor supply) can be found a.o. in Nowak (2006). Also, it bears mentioning
that our supermodularity assumptions on the primitives of preferences u(c, l)
and production g are critical for showing monotonicity of a best response
operator in a model with an absorbing state.

To understand our assumptions in the context of the existing literature,
in related work on stochastic bequest economies (with inelastic labor sup-
ply), Amir (1996b) uses a different approach to characterizing the stochastic
transition Q. Apart on the assumptions of the state space K that we have
already discussed, the main differences between our case (following Nowak)
and Amir assumptions are the following: (i) Amir assumes that transition
Q, parameterized by current decisions, is (weakly) continuous, stochastically
increasing and stochastically concave, while (ii) Nowak takes Q to depend
on both current decisions and current state, and lets Q be given by a convex
combination of a finite number of measures, where weights are given by the
production process gi.

Therefore, on the one hand, Nowak does not require stochastic mono-
tonicity and stochastic concavity of Q, while on the other hand, Amir do not
require the particular (convex combination) structure of Q. The critical re-
sults obtained in this paper follow from the monotonicity of a best response
operator, where sufficient conditions can be given for Nowak structure of
Q. It is not clear how such results can be generalized to the case of Amir’s
stochastic transition structure on Q. To see this, think of an transition given
by assumption 3 when a measures �1 is stochastically dominating �2. This
can generate Amir’s transitions (see his example 2 and following comments);
but, unfortunately as we argue later, this set of assumptions is not sufficient
to show monotonicity of the best response operator we study (and, hence,
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not sufficient for uniqueness using methods developed in this paper).

By D, we denote a set of all measurable pure strategies

D := {ℎ : K → K × L : (∀s ∈ S)ℎ(s) ∈ A(s), ℎ is measurable}

endowed with standard pointwise (product) order ≤ by:

(∀�, � ∈ D) � ≤ � iff (∀s ∈ K) �1(s) ≤ �1(s) and �2(s) ≤ �2(s).

For ℎ ∈ D, given continuity of the primitive data of the model (i.e., utility
and stochastic production), we can define the best response map BR(ℎ)(s)
as follows:

BR(ℎ)(s) := arg max
(c,l)∈A(s)

U(c, l;ℎ, s).

Then, a Markov perfect Nash equilibrium (MPNE) in D is any function
ℎ∗ ∈ D such that ℎ∗ ∈ BR(ℎ∗).

3 Existence and approximation of MPNE

We begin our analysis of MPNE in this model by considering the case of
stochastic production with an absorbing state. In this setting, we prove
the existence of MPNE in the set of bounded, measurable strategies D. In
particular, under assumptions 1 and 4, we can write the objective for a
typical generation as:

U(c, l;ℎ, s) := u(c, l) +
m∑
k=1

∫
K

v(ℎ1(y), ℎ2(y))�k(dy∣s)gk(s− c, 1− l).

In Theorem 3.1, we are ready to state our first major existence result
under the assumption of an absorbing state for stochastic production.

Theorem 3.1 (Existence of MPNE) Under assumptions 1 and 4 there
exists a stationary perfect equilibrium. Moreover the set of MPNE in D is
an anti-chain (i.e. has no ordered elements).

The existence result in the paper like those in theorem 3.1 (and later
in 3.4) are obtained under very general conditions on technology and pref-
erences. They extend the existence results previously obtained in Amir
(1996b) and Nowak (2006) to the case of altruistic stochastic growth with
more general paternalistic altruism (namely, altruism defined over multi-
dimension strategies by the successor generation (in our case, consumption
and leisure), as well as elastic labor supply.

As for corollaries of theorem 3.1, we can provide a further characteriza-
tion of the continuity and monotonicity properties of any MPNE policy in
D. We first begin in corollary 1 with an additional result on the continuity
properties of MPNE in the set of measurable strategies D.
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Corollary 1 (Continuous MPNE) Let assumptions 1 and 4 be satisfied.
Assume additionally that

i) there exists a �- measurable and integrable function �̄ such that �j(s
′, s) ≤

�̄(s′) for each s′, s ∈ K and j = 1, ...,m,

ii) for each function f : K → K such that
∫
K

f(s′)�̄(s′)�(ds′) < ∞ the

integral
∫
K

f(s′)�(s′, s)�(ds′) is continuous as a function of s,

iii)
∫
K

v(s′, 1)�̄(s′)�(ds′) <∞.

Then there exists a MPNE (c∗, l∗) where c∗(⋅) and l∗(⋅) are continuous func-
tions.

Notice, unlike the results in the case of inelastic labor supply and 1
period altruism (e.g., Amir (1996b)), the result is continuous MPNE. So
with elastic labor and more general intergenerational altruism, we are unable
to obtain MPNE that are Lipschitzian (see discussion below). In particular,
investment decisions are only continuous, but not increasing everywhere.
This is also in contrast to the case of stochastic growth models with elastic
labor supply and perfect commitment (where investment can be show to be
increasing in the current period capital stock/output).

Finally, we can consider the monotonicity properties of MPNE (aside
from simply the issues of investment noted above). In corollary 2, under an
additional separability condition for stochastic production, we give mono-
tonicity properties of MPNE in D

Corollary 2 (Monotone MPNE) Let assumptions 1 and 5 be satisfied.
Then, there exists a MPNE (c∗, l∗) with both c∗(⋅) and l∗(⋅) increasing func-
tions.

Combining results of theorem 3.1, corollaries 1 and 2, we obtain condi-
tions for existence of a continuous and monotone MPNE under very gen-
eral (complementarity) conditions. Observe, however, that our result pro-
vide weaker characterization of MPNE than obtained in Amir (1996b) and
Nowak (2006) for models with inelastic labor supply. In particular, our char-
acterization of a MPNE policies do not guarantee existence of an Lipschitz
continuous MPNE. So by introducing two choice variables (consumption
and leisure) into the game, we cannot guarantee this important additional
characterization of MPNE. In Example 3.3 below, we shall also provide an
example where MPNE exist, but are neither monotone nor Lipschitz con-
tinuous in our game. In this sense, this example shall show both that (i)
Lipschitzian MPNE cannot be generally expected in this class of stochastic
games, and further (ii) assumption 5 cannot be dropped in corollary 2.
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To complete our characterization of MPNE in our baseline model, we now
address the question of approximating MPNE in this game. In theorem 3.2,
in particular, we prove an important theorem concerning an approximation
of a MPNE. We do this by a simple truncation/iteration argument, and
studying the structure of pointwise limits. In particular, for n ≥ 1, and given
s ∈ K , we can recursively define the sequences: �2n(s) = BR(�2n−1)(s),
�2n+1(s) = BR(�2n)(s) with (∀s ∈ K)�1(s) = (0, 0). Similarly we let
 2n(s) = BR( 2n−1)(s),  2n+1(s) = BR( 2n)(s) with (∀s ∈ K) 1(s) =
(s, 1). Observe, this can be done as under our assumptions, BR is a function
(see lemma 4.3).

With this notation, we present first existence of fixed edges (�d, �u) and
( d,  u) with a (pointwise) approximation result for a set of MPNE.

Theorem 3.2 (Approximation of MPNE set) Under assumptions 1 and
4 the following holds:

i) there exist limits

(∀s ∈ K) �d(s) = lim
n→∞

�2n−1(s) and �u(s) = lim
n→∞

�2n(s), (1)

ii) as well as

(∀s ∈ K)  u(s) = lim
n→∞

 2n−1(s) and  d(s) = lim
n→∞

 2n(s), (2)

iii) �u = BR
(
�d
)
, �d = BR (�u), and  u = BR

(
 d
)
,  d = BR ( u),

iv) if ℎ∗ is a MPNE then (∀s ∈ K) �d(s) ≤ ℎ∗(s) ≤  u(s),

v) if �d(s) =  u(s) for all s ∈ K then there is a unique MPNE ℎ∗.
Moreover ℎ∗(s) = �d(s) =  u(s) = �u(s) =  d(s).

An important remark on this theorem. The existence of fixed edges for
iterations, as well as the limiting results in the theorem follow directly from
the monotonicity of a BR operator in the model with an absorbing state
(see 4.3). It then turns out one way of showing these results is to adapt the
methods in (Guo, Cho, and Zhu (2004), chapter 3.2) to our problem with
decreasing operators. Therefore, Theorem 3.2.(iv) states our first approx-
imation result, i.e. pointwise bounds for a set of MPNE. Theorem 3.2.(v)
then provides a type of numerical stability result for iterative methods.

To obtain a further characterization of the set of MPNE, we need more
assumptions on preferences (namely separability of utility with respect to
consumption and leisure), as well as an Inada type assumptions on function
g. We should mention, these assumptions are often used in the applied
macroeconomics literature:
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Theorem 3.3 (Uniqueness of a MPNE) Let assumption 2 and 4 with
m = 1 be satisfied i.e.

Q(⋅∣s− c, 1− l, s) := g(s− c, 1− l)�(⋅∣s) + (1− g(s− c, 1− l))�0(⋅), (3)

and for each (c, l) ∈ Int(A(s)). Assume additionally that g is on the form
g(c, l) = g1(c) + g2(l), where both gi are increasing, concave and twice con-
tinuously differentiable. Moreover, g′1(0) = g′2(0) =∞. Finally assume that
there exists a number � ∈ (0, 1) such that ∀(c, l) ∈ Int(A(s)) (with s > 0) we
have:

−
v(1)(c,l)
v(c,l)

u′′1 (c)
u′1(c)

+
g′′1 (s−c)
g′1(s−c)

−
v(2)(c,l)
v(c,l)

u′′2 (l)
u′2(l)

+
g′′2 (1−l)
g′2(1−l)

≤ �. (4)

Then there exists a unique MPNE ℎ∗ in D. Moreover let ℎ0 ∈ D be an
arbitrary starting point in the sequence of iterations 'n+1 = BR('n) with
'1 = ℎ0 then

lim
n→∞

∣∣'n − ℎ∗∣∣ = 0,

and
∣∣'n − ℎ∗∣∣ ≤M(1− � rn),

where M, � are constants dependent on a choice of ℎ0.

A number of important things about Theorem 3.3. First, the theorem
give conditions under which there exist a unique MPNE in D. These con-
ditions, although restrictive, are actually met often in applications. Second,
combining this with corollaries 1 and 2, we obtain existence of a unique, con-
tinuous and monotone MPNE. Our method of proving the uniqueness result
is bases on the uniqueness of a fixed point of a particular operator defined
an a (normal and solid) cone. The result is obtained by showing that under
condition (4) particular operator, corresponding to best response map, is
decreasing and e-convex (in the terminology of Guo and Lakshmikantham
(1988)). Hence, by applying theorem 3.2.5 in Guo, Cho, and Zhu (2004),
one has a unique fixed point and convergence and approximation results in
theorem 3.2.(v) follow.

Third, also observe that although in theorem 3.2, we obtain approx-
imation results for pointwise limits, in our context, we now get uniform
convergence results. The reason for this follows again from condition (4),
which guarantees that our cone in not only normal but also regular (see Guo,
Cho, and Zhu (2004) for discussion). Fourth, although it is not obvious to
verify whether the operator used in the proof of theorem in a contraction,
by a converse to the contraction mapping theorem (see e.g. Leader (1982)),
one obtains this link indirectly. This argument can be made explicit using
exactly the same argument in Balbus, Reffett, and Woźny (2009) adapted to
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our setting, and it can give additional computation procedures and uniform
error bounds for a (step function) approximation relative to unique MPNE.

Finally, let us mention that the operator used in the proof of this the-
orem is defined on the set of bounded measurable functions on K, and
assigns for any expected utility of the next generation its best response
expected utility of a current generation (see proof of theorem 3.3 for the
details). Hence, interesting, this operator is a operator defined on the space
of value functions, and whose construction can be equivalent motivated by
the correspondence-based strategic dynamic programming methods of Kyd-
land and Prescott (1980) and Abreu, Pearce, and Stacchetti (1990), but only
adapted to stochastic OLG models with discounting. That is, it could be
defined (in this example) as a selection in strategic dynamic programming
approach defined in spaces of (measurable) correspondences of continuation
value functions. In this sense, we have proven that if we restrict our attention
to strategic dynamic programming methods that select measurable continu-
ation structures (ala Sleet (1998)) for our environment, this mapping would
produce iterations (eventually) that are described in theorem 3.2. That is,
in some cases, strategic dynamic programming methods (at least local to
a greatest fixed point) can possess geometric structure. Additionally, the
way we calculate strategies associated with a particular value function is
based on the (generalized) inverse procedure proposed by5 Coleman (2000).
This indicates how all these methods can be unified in the context of our
stochastic OLG model without commitment under additional conditions.

Remark 1 Note that the proof and hence result of 3.3 would still hold if we
replace condition of nonsingularity of second order derivatives by condition

∀(c, l) ∈ Int(A(s)) u′′1(c) < 0 and u′′2(l) < 0.

Finally observe that under conditions of theorem 3.3 we immediately
obtain the following corollary.

Corollary 3 (Finite horizon approximation) Consider a finite horizon
version of our economy, i.e. for a finite T let (∀t < T ) preferences be given
by u1(ct)+u2(lt)+(g1(st−ct)+g2(1− lt))

∫
K v(ct+1(y), lt+1(y))�(dy∣st) and

for the last generation by u1(cT ) + u2(lT ). Let assumptions of theorem 3.3
be satisfied and denote by ℎ∗T the unique perfect equilibrium strategy of the
first generation in T horizon game, then

lim
T→∞

∣∣ℎ∗T − ℎ∗∣∣ = 0,

where ℎ∗ is the unique MPNE from theorem 3.3.

5See also Nowak (2007) section 5 for a similar argument.
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We should mention additive separability in consumption and leisure is
a typical assumption in applied lifecycle models. Further, in Balbus, Ref-
fett, and Woźny (2009), authors show uniqueness condition (with inelastic
labor supply), similar to our condition (4). One can note per our present
uniqueness results, by multiplying the numerator and the denominator in
inequality (4) by c, we obtain the corresponding ”elasticities” interpretation
for our uniqueness theorem. Hence, coming up with examples of where our
theorems apply are quite simple. For example, consider an example which
explains our arguments.

Example 3.1 Let u1(c) = c�1, u2(l) = l�2 and v(c, l) = c�1 l�2. We find
parameters �i,�i ∈ (0, 1) such that this model satisfies condition 4:

−
v(1)(c,l)
v(c,l)

u′′1 (c)
u′1(c)

+
g′′1 (s−c)
g′1(s−c)

−
v(2)(c,l)
v(c,l)

u′′2 (c)
u′2(c)

+
g′′2 (1−l)
g′2(1−l)

=

=
�1

1− �1 −
g′′1 (s−c)
g′1(s−c)

+
�2

1− �2 −
g′′2 (1−l)
g′2(1−l)

≤

≤ �1
1− �1

+
�2

1− �2
.

Hence condition of theorem 3.3 is satisfied if �1
1−�1

+ �2
1−�2

< 1 and g1 and g2
are arbitraries functions satisfying assumption 4 and conditions of theorem
3.3.

Assumption on existence of an absorbing state may be restrictive es-
pecially in when the state space K is bounded (see discussion in Balbus,
Reffett, and Woźny (2009)) for this reason we state a MPNE existence re-
sult for a model without absorbing point. Under assumptions 1 and 3 for a
given strategy ℎ ∈ D the objective becomes now:

U(c, l;ℎ, s) := u(c, l) + �(ℎ, s)g(s− c, 1− l) + (ℎ, s),

with

(ℎ, s) :=

∫
K

v(ℎ1(y), ℎ2(y))�2(dy∣s) and

�(ℎ, s) :=

∫
K

v(ℎ1(y), ℎ2(y))�1(dy∣s)−
∫
K

v(ℎ1(y), ℎ2(y))�2(dy∣s).

We state the following theorem.

Theorem 3.4 (Existence of a continuous MPNE) Under assumptions
1 and 3 there exists a MPNE. If in addition:
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i) there exists a �- measurable function �̄ such that �j(s
′, s) ≤ �̄(s′) for

each s′, s ∈ K and j = 1, ...,m,

ii) for each function f : K → K such that
∫
K

f(s′)�̄(s′)�(ds′) < ∞ the

integral
∫
K

f(s′)�(s′, s)�(ds′) is continuous as a function6 of s,

iii)
∫
K

v(s′, 1)�̄(s′)�(ds′) <∞.

Then MPNE = (c∗, l∗), where c∗(⋅) and l∗(⋅) are continuous functions.

We continue this section by presenting two additional examples showing
application for results 3.1 and 3.2. We assume however that K = [0, S],
where S ∈ ℝ++.

Example 3.2 In this example, assumptions 1 and 4 are satisfied. Let u(x, l) =√
s 4
√
l and v(c, l) =

√
cl, and

Q(⋅∣s− c, 1− l, s) =
√
s− c 4

√
1− l�(⋅) +

(
1−
√
s− c 4

√
1− l

)
�0(⋅),

where, � is a uniform distribution on [0, 1]. Then, we have

U(c, l;ℎ, s) =
√
c

4
√
l + �(ℎ)

√
s− c 4

√
1− l,

with �(ℎ) :=
∫
K

√
(ℎ1(s′))(ℎ2(s′))�(ds′). The best response map BR is a well

defined function, and can be described:

BR(ℎ)(s) :=

(
s

1 + �4(ℎ)
,

1

1 + �4(ℎ)

)
By theorem 3.2, we conclude that each perfect equilibrium is the limit �d and
 u, where

�d(s) := lim
n→∞

�2n−1

and
 u(s) := lim

n→∞
 2n−1,

where, the above sequences are in the form �1(s) = (0, 0), and, for n > 1

�n+1(s) =

(
s

1 + �4 (�n)
,

1

1 + �4 (�n)

)
.

At the same time  1(s) = (s, 1) and for n > 1

 n+1(s) =

(
s

1 + �4 ( n)
,

1

1 + �4 ( n)

)
.

6Obviously this condition is satisfied if for all s′ ∈ K the function �(s′, ⋅) is continuous.
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We can compute �(�n) by the following recursive formula: �(�1) = 0 ; for
n > 1 , we have

� (�n+1) =

∫
K

√
sds

1 + �4 (�n)
=

2
3

1 + �4 (�n)
.

The same recursive formula is satisfied for � ( n). Only initial value is dif-

ferent, i.e, � ( 1) = 2
3 . Note, the function f(x) =

2
3

1+x4
is decreasing, hence

� (�n) and � ( n) have at most two cumulation points, with both cumulation
points the cumulation point of

f(f(x)) =
2
3

1 +
( 2

3
1+x4

)4 .
Since f(f(x)) has exactly one fixed point �∗ ≈ 0, 5932, this is also a unique
fixed point of f . Hence, � (�n)→ �∗ and � ( n)→ �∗. Further, the functions
�d and  u from theorem 3.2 are equal and

�d(s) =  u(s) =

(
s

1 + (�∗)4
,

1

1 + (�∗)4

)
≈
(

s

1.12
,

1

1.12

)
≈ (0.89 s, 0.89).

Then by theorem 3.2, this strategy above is an unique MPNE. Observe, how-
ever, that the conditions of theorem 3.3 are not satisfied by this example. On
the other hand, we show an application of approximation from theorem 3.2.

The next example shows that strict concavity assumptions on u and g
(on the interior of their domain) are necessary for BR to be a function.

Example 3.3 Let u(c, l) =
√
cl, v(c, l) = 3

√
cl. Transition probability is of

the form

Q(⋅∣s− c, 1− l, s) =
√

(s− c)(1− l)�(⋅) +
(

1−
√

(s− c)(1− l)
)
�0(⋅),

where � is a uniform distribution on [0, 1]. Note, neither u neither g is
strictly concave in the interior of any A(s), since both functions are linear
on the diagonals d(s) := {(c, l) : c = ls}. We have

U(c, l;ℎ, s) =
√
cl + �(ℎ)

√
(s− c)(1− l),

with �(ℎ) := 3
∫
K

√
(ℎ1(s′))(ℎ2(s′))�(ds′). Then, the best response map BR :

D → 2D is a multifunction describe as:

BR(ℎ)(s) =

⎧⎨⎩
{(1, s)} if �(ℎ) < 1,
{(sl, l) : l ∈ [0, 1]} if �(ℎ) = 1,
{(0, 0)} if �(ℎ) > 1.

(5)
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Hence, the maximal best response (pointwise order) is

BR(ℎ)(s) =

{
(1, s) if �(ℎ) ≤ 1,
(0, 0) if �(ℎ) > 1.

while, the minimal best response is

BR(ℎ)(s) =

{
(1, s) if �(ℎ) < 1,
(0, 0) if �(ℎ) ≥ 1.

By (5), each strategy of the form ℎ∗(s) = (s l∗(s), l∗(s)) such that � (ℎ∗) = 1
is a MPNE. This mean l∗ : K → [0, 1] is arbitrary Borel-measurable function
satisfying:

�(ℎ) = 3

∫
S

√
s′l∗(s′)ds′ = 1,

or, equivalently, ∫
S

√
s′l∗(s′)ds′ =

1

3
.

Hence, there is many examples of perfect equilibria, for example: ℎ1(s) =(
s
2 ,

1
2

)
, ℎ2(s) =

(
5
6s

2, 56s
)

and ℎ3(s) =
(
5
6s
√
s(1− s), 56

√
s(1− s)

)
. Note

that ℎ3 is neither increasing with respect to s, neither Lipschitz continuous.
Finally, note �d(s) = (0, 0) and  u(s) = (s, 1), hence, in this case, our
approximation from theorem 3.2 becomes trivial.

Theorems 3.1, 3.3 and 3.4 guarantee existence of MPNE in the models
with and without absorbing state. We end up this section by analyzing
a proces generated by these MPNE and find conditions for existence of a
associated invariant distribution and hence Stationary Markov Equilibria.

Theorem 3.5 (Existence of a SME) Assume 1 and 3. If additionally
c∗(⋅) and l∗(⋅) are continuous functions, �2 does not depend on s (i.e. �2(⋅∣s) ≡
�2(⋅)) and sup

s∈K
g(s, 1) < 1, then there exists a unique invariant distribution.

To see the role of assumptions in theorem 3.5 follow the example:

Example 3.4 Let �1(⋅∣s) = �2(⋅∣s) and it is a Dirac delta in s + 1. Then
Q({s + 1}∣s) = 1. Note that the assumption of theorem 3.5, i.e. �2(⋅∣s)
does not depend on s is not satisfied. It is easy to notice that the invariant
distribution does not exist.
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4 Proofs

4.1 Proofs in the model with absorbing state

We start by extending to the set of strategies D to a set of randomized
policies: D, i.e. if ℎ̄ ∈ D then ℎ̄ is a transition probability from K to K ×L
such that ℎ̄ (A(s)∣s) = 1. Under assumptions 1 and 4 we define ℬℛ : D → D
in the following way

ℬℛ
(
ℎ̄
)

(s) := arg max
(c,l)∈A(s)

U(c, l; ℎ̄, s),

where

U(c, l; ℎ̄, s) := u(c, l)+
m∑
k=1

∫
K

∫
K×L

v(c′, l′)ℎ̄(dc′, dl′∣s)�k(dy∣s)gk(s−c, 1−l).

Following Balbus and Nowak (2008) we endow D with the weak-star
topology. By a Caratheodory function w : C → R on C := K×A with A :=
K×L we mean a function such that w(s, ⋅) is continuous on A(s) for each s ∈
K, w(⋅, a) is Borel measurable for each a ∈ A(s) and s→ maxa∈A(s) ∣w(s, a)∣
is �-integrable over K. Since all the sets A(s) are compact, D is compact
and metrizable when endowed with the weak-star topology. For the details
we refer the reader to Balder (1980) or Chapter IV in Warga (1972). Here,
we only mention that a sequence ℎ̄n converges to ℎ̄ if and only if for every
Caratheodory function∫

K

∫
A(s)

w(s, a)ℎ̄n(da∣s)�(ds)→
∫
K

∫
A(s)

w(s, a)ℎ̄(da∣s)�(ds).

Observe that D could be treated as the set of equivalence class of �
correlated strategies equal � a.e. Note that each function ℎ ∈ D can be
treated as a member of D (say ℎ̄) which has property ℎ̄(s) ∈ {ℎ(s)} � a.e.

Now define an auxiliary function

F (c, l, �, s) := u(c, l) +

m∑
k=1

�kgk(s− c, 1− l),

with � := (�1, ..., �m). We formulate a lemma.

Lemma 4.1 Under assumptions 1 and 4, the functions

C0(l, �, s) := arg max
c∈[0,s]

F (c, l, �, s),

and
L0(c, �, s) := arg max

l∈[0,1]
F (c, l, �, s),

are well defined. Moreover, c → L0(c, �, s) is increasing and continuous,
l→ C0(l, �, s) is increasing and continuous.
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Proof of lemma 4.1 Step 1: Fix l ∈ L and � and s ∈ K. Note that if
s = 0 then C0(l, �, s) = 0 and L0(c, �, s) = 0. Assume that s > 0.
Let C0(l) := C0(l, �, s) We show that C0 is well defined. By assumption 4 we
obtain that the function above is strictly concave on c ∈ (0, s) and hence on
c ∈ [0, s] if l ∈ (0, 1). Hence C0(l) is well defined on l ∈ (0, 1). Suppose that
C0(0) is not well defined. Then by concavity the function c → F (c, 0; �, s)
would be constant on some interval say c ∈ (c1, c2), where both ci ∈ C0(0).
But it is impossible since each gi(s − c, 1) is strictly concave in c. Hence
C0(0) posses a single element. If l = 1 then

F (c, 1; �, s) := u(c, 1).

Hence C0(1) = s and C0(l) is well defined.
We show that C0(⋅) is decreasing function. Note that for all s ∈ K the

set I(s)× L is complete lattice. Define �(c, l) = U(c, l;ℎ, s).

�(1,2)(c, l) = u(1,2)(c, l) +
m∑
k=1

�kg
(1,2)(s− c, 1− l) > 0.

Hence � is supermodular and by Topkis (1978) and Berge (1997) maximum
theorem C0 is increasing and continuous in l.

Step 2: Fix s ∈ K c ∈ I(s). Let

L0(c) = arg max
l∈L

U(c, l, ℎ, s).

We show that L0 is well defined function Let c = s. Then by assumptions 1
and 4 we have

F (s, l, �, s) := u(s, l).

Hence L0(s) = 1. Let c = 0. We obtain that

F (0, l, �, s) = u(0, l) +
m∑
k=1

�kg
(1,2)(s, 1− l) > 0.

Since the function above is strictly concave, hence L0(0) is well defined as
well. If c ∈ (0, s), by assumption 1 and 4 we know that �(c, l) := U(c, l;ℎ, s)
is strictly concave. Hence L0(c) is also well defined in this case. Moreover
by assumptions 1 and 4 we have

�(1,2)(c) := u(1,2)(c, l) +
m∑
k=1

�kg
(1,2)(s− c, 1− l) ≥ 0.

Hence � is supermodular on the complete lattice I(s)× L. Hence by Topkis
(1978) and Berge (1997) maximum theorem L0(⋅) is increasing and contin-
uous in c.
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Lemma 4.2 The functions � → C0(l, �, s) and � → L0(c, �, s) are decreas-
ing in product order sense.

Proof of lemma 4.2 Note that if at least one �k > 0, then by assumption
1 and 4 we know that both functions c→ F (c, l, �, s) and l→ F (c, l, �, s) are
strictly concave. Let �1 ≤ �2 in product order sense. Then by assumption 4
we have

F (1)
(
c, l, �1, s

)
= u(1)(c, l)−

m∑
k=1

�1kg
(1)
k (s− c, 1− l)

≥ u(1)(c, l)−
m∑
k=1

�2kg
(1)
k (s− c, 1− l)

= F (1)
(
c, l, �2, s

)
.

Hence we easily conclude that C0(l, �
1, s) ≥ C0(l, �

2, s). Similarly we
prove that � → L0(c, �, s) is decreasing.

Lemma 4.3 For each ℎ ∈ D function BR(ℎ) is well defined. Moreover BR
is decreasing.

Proof of lemma 4.3 Step 1: Without loss of generality assume s > 0.
Note that by assumption 1 function (c, l) → U(c, l;ℎ, s) is strictly concave.
Hence BR(ℎ) is well defined function BR : D → D.

Step 2: We show monotonicity of BR. Note that BR(ℎ)(s) = (s, 1) if

U (1)(c, l;ℎ, s) ≥ 0 and U (2)(c, l;ℎ, s) ≥ 0,

with strict inequality in at least one position of this system above. Next
BR(ℎ)(s) = (0, 0) if

U (1)(c, l;ℎ, s) ≤ 0 and U (2)(c, l;ℎ, s) ≤ 0,

with strict inequality in at least one position of this system above. If the
system has a solution, then BR(ℎ)(s) solves it. Note that if BR(ℎ)(s) =
(cℎ, lℎ) then

cℎ = C0(l
ℎ, �(ℎ, s), s) and lℎ = L0(c

ℎ, �(ℎ, s), s),

where �k(ℎ, s) :=
∫
S

v(ℎ1(s
′), ℎ2(s

′))�k(ds
′∣s) and � = (�1, ..., �m). Now

we show that (cℎ, lℎ) is decreasing in ℎ. By lemma 4.2 both functions
� → C0(l, �, s) and � → L0(c, �, s) are decreasing. Define �1(l, ℎ, s) :=
C0(l, �(ℎ, s), s) and �2(c, ℎ, s) := L0(c, �(ℎ, s), s). Clearly for i = 1, 2 the
function ℎ → �i(c, ℎ, s) is decreasing by definition of �i and �(ℎ, s) and
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lemma 4.2. Let p and r ∈ D and p ≤ r. Then �(p, s) ≤ �(r, s). Note that
if (cr, lr) = (0, 0) then clearly (0, 0) = (cr, lr) ≤ (cp, lp). Let (cr, lr) = (s, 1).
Then for i = 1, 2 and each (c, l) we have

0 ≤ u(i)(c, l)−
m∑
k=1

�k(r, s)g
(i)
k (s−c, 1−l) ≤ u(i)(c, l)−

m∑
k=1

�k(p, s)g
(i)
k (s−c, 1−l).

with at least strict inequality above. Hence we also have (cp, lp) = (s, 1).
Hence desired inequality holds also in this case. Suppose for i = 1, 2 we have

u(i)(cr, lr)−
m∑
k=1

�k(r, s)g
(i)
k (s− cr, 1− lr) = 0

and

u(i)(cp, lp)−
m∑
k=1

�k(p, s)g
(i)
k (s− cp, 1− lp) = 0.

We obtain

0 = u(1)(cp, lp)−
m∑
k=1

�k(p, s)g
(1)
k (s− cp, 1− lp) (6)

≥ u(1)(cp, �2(c
p, p, s))−

m∑
k=1

�k(r, s)g
(1)
k (s− cp, 1− �2(cp, p, s))

≥ u(1)(cp, �2(c
p, r, s))−

m∑
k=1

�k(r, s)g
(1)
k (s− cp, 1− �2(cp, r, s)).

(7)

The last inequality follows from properties of �2, supermodularity of u and
each gk on all sets A(s), and lemma 4.2. Note that by definition of �2 c

r is
a zero element of the function

f0(c) := u(1)(c, �2(c, r, s))−
m∑
k=1

�k(r, s)g
(1)
k (s− c, 1− �2(c, r, s)).

We claim that cr is unique solution of equation above. On the contrary
suppose f0(c

′) = 0 and c′ ∕= cr. Then (c′, �2(c
′, r, s)) holds

u(1)(c′, �2(c
′, r, s))−

m∑
k=1

�k(r, s)g
(1)
k (s− c′, 1− �2(c′, r, s)) = 0.

By definition of �2(c
′, r, s) at the same time we have

u(2)(c′, �2(c
′, r, s))−

m∑
k=1

�k(r, s)g
(2)
k (s− c′, 1− �2(c′, r, s)) = 0,
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and hence by assumption 1 we obtain that (c′, �2(c
′, r, s)) is argument max-

imizing U(c, l; r, s) over (c, l) ∈ A(s). But (cr, lr) also maximize U(c, l; r, s)
over (c, l) ∈ A(s). It is contradiction because (c, l) → U(c, l; r, s) is strictly
concave in the interior of A(s). Hence f0(c) = 0 has unique solution cr. Note
that by 7 f0(c

p) < 0. Moreover, by strict concavity of (c, l)→ F (c, l; �, s) for
each (c, l) ∈ A(s) we have

0 ≤ F (cr, lr; �(r, s), s)− F (c, l; �(r, s), s)

< F (1)(c, l; �(r, s), s)(cr − c) + F (2)(c, l; �(r, s), s)(lr − l). (8)

If we put to 8 c := cp and l := �2(c
p, r, s) we obtain

F (2)(cp, �2(c
p, r, s); �(r, s), s) = 0 and F (1)(cr, �2(c

p, r, s); �(r, s), s) = f0(c
p). (9)

Therefore 0 ≤ f0(c
p)(cr − cp). Since f0(c

p) < 0, hence cp > cr. Hence,
by definition of �2 and lemmas 4.1 and 4.2 we conclude lp = �2(c

p, p, s) ≥
�2(cr, r, s) = lr, which means that in product order sens BR(p)(s) = (cp, lp) ≥
(cr, lr) = BR(r)(s).

Lemma 4.4 BR is a continuous function i.e. if ℎn → ℎ pointwise, then
BR(ℎn)→ BR(ℎ) pointwise as well.

Proof of lemma 4.4 Since (c, l) → U(c, l;ℎ, s) is concave it is sufficient
to show that ℎ→ U(c, l;ℎ, s) is continuous. Note that

U(c, l;ℎ, s) = F (c, l, �(ℎ, s), s).

Clearly F is continuous. It is sufficient to show that �(⋅, s) is continuous
in the pointwise topology. If ℎn → ℎ pointwise we obtain �(ℎn, s) → �(ℎ, s)
by assumption 1 and Lebesgue Dominance theorem. Hence U(c, l;ℎ, s) is
continuous in ℎ as superposition of continuous functions. By strict concavity
of U(⋅, ⋅;ℎ, s) the proof is complete.

Proof of theorem 3.1: First we show that ℬℛ is well defined function
mapping D to D. Note that

U(c, l; ℎ̄, s) = F (c, l; �(ℎ̄, s), s),

where

�k(ℎ̄, s) :=

∫
K

∫
A(s)

v(c′, l′)ℎ̄(dc′, dl′∣s′)�k(ds′∣s)

=

∫
K

∫
A(s)

v(c′, l′)�k(s
′, s)ℎ̄(dc′, dl′∣s′)�(ds′).
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Note that by definition of U , assumption 1 we immediately obtain that
U is strictly concave in (c, l) ∈ A(s). Hence there is unique optimal so-
lution of maximization problem of U(c, l; ℎ̄, s). Hence we have shown that
ℬℛ : D → D. Moreover, the image of ℬℛ is contained in D i.e. ℬℛ(D) ⊂ D.
Now we show that ℬℛ is continuous in the weak-star topology. Let ℎ̄n → ℎ̄
in the weak star topology. Note that if a = (c, l) then for each s ∈ K the
function

wk(s
′, a) := v(a)�k(s

′, s)

is a Caratheodory function. Hence

�k(ℎ̄n, s)→ �k(ℎ̄, s) as n→∞,

and U(c, l; ℎ̄n, s)→ U(c, l; ℎ̄, s). Since for each ℎ̄ and s the function (c, l)→
U(c, l; ℎ̄, s) is strictly concave in the interior of its domain, hence optimal so-
lution of U(c, l; ℎ̄n, s) must converge to the optimal solution of U(c, l; ℎ̄, s).
Hence there ℬℛ(ℎ̄n) → ℬℛ(ℎ̄) pointwise and ℬℛ is continuous. Hence
by Schauder-Tikhonov theorem we conclude that there exists fixed point
ℎ∗ = ℬℛ(ℎ∗) � a.e. Let ℎo := ℬℛ(ℎ∗). Since ℬℛ : D →D, hence ℎo must
be a stationary strategy. Since ℎo = ℎ∗ � a.e. by definition of the function
�(ℎ, s) we conclude that �(ℎ∗, s) = �(ℎo, s) for each s ∈ K and hence for each
(c, l) we have U(c, l;ℎo, s) = U(c, l;ℎ∗, l). Hence ℎo = ℎ∗ for each s ∈ K and
ℎ∗(s) = ℬℛ(ℎ∗)(s) for each s ∈ K.

Proof of corollary 1: We show that a stationary MPNE (c∗(s), l∗(s)) is a
continuous function. It is sufficient to show that BR maps D into the set of
bounded, continuous functions on K. Fix ℎ ∈ D. Let sn → s0 as n tends to
∞. By condition (iii) of this corrolary we have

∫
K

v(ℎ1(s
′), ℎ2(s

′))�j(s
′, sn)�(ds′) ≤

∫
K

v(s′, 1)�̄j(s
′)�(ds′). (10)

By condition (iii) we obtain
∫
K

v(s′, 1)�̄j(s
′)�(ds′) < ∞. Hence, by (ii) and

Lebesgue Dominance theorem we immediately obtain

∫
K

v(ℎ1(s
′), ℎ2(s

′))�j(ds
′∣sn)→

∫
K

v(ℎ1(s
′), ℎ2(s

′))�j(ds
′∣s0). (11)

Let (cn, ln) := BR(ℎ)(sn) and (c0, l0) be an arbitrary cummulation point of
(cn, ln). We have

U(cn, ln;ℎ, s) ≥ U(c, l;ℎ, s)
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for all (c, l) ∈ A(s) and n ∈ N . Hence and by (11) we immediately obtain

U(c0, l0;ℎ, s) ≥ U(c, l;ℎ, s),

for all (c, l) ∈ A(s). Hence (c0, l0) := BR(ℎ)(s0). Hence BR maps D into
set of continuous functions. Therefore (c∗(⋅), l∗(⋅)) must be a continuous
function.

Proof of corollary 2: Note that the utility has now a form

U(c, l;ℎ, s) = u(c, l) + g1(s− c)
∫
K

v(ℎ1(s
′), ℎ2(s

′))�(ds′∣s)

+g2(1− l)
∫
K

v(ℎ1(s
′), ℎ2(s

′))�(ds′∣s).

Fix arbitrary s > 0, and ℎ ∈ D. If
∫
K

v(ℎ1(s
′), ℎ2(s

′))�(ds′∣s) > 0, then

by assumption 1 and 5 this function above is strictly concave on A(s), and
hence maximization problem of (c, l) → U(c, l;ℎ, s) has unique solution. If∫
K

v(ℎ1(s
′), ℎ2(s

′))�(ds′∣s) = 0, then only (s, 1) is optimal solution. Hence

best response map BR is well defined function. Further if we follow the
reasoning from theorem 3.4 we obtain that BR has a fixed point.

Finally observe that by assumptions for each ℎ ∈ D where ℎ is increasing,
function U(⋅, ⋅, ;ℎ, ⋅) is supermodular in (c, l) and has increasing differences
in (c, s) and (l, s). Hence by Topkis (1978) theorem for each increasing ℎ ∈ D
function BR(ℎ)(⋅) in increasing on K. Hence BR maps increasing (bounded,
measurable) functions into increasing (bounded, measurable) functions and
a fixed point of BR, i.e. a MPNE is increasing on K.

Proof of theorem 3.2: Step 1. We prove (i). We show that �2n−1 is
increasing and �2n is decreasing. Clearly �1 ≤ �3 and �1 ≤ �2. By lemma
4.3 and definition of sequence �n we obtain

�2 = BR(�1) ≥ BR(�3) = �4.

Suppose that for some n hold �2n ≥ �2(n+1) and �2n−1 ≤ �2n+1. By lemma
4.3 and definition of sequence �n we obtain

�2n+1 = BR (�2n) ≤ BR (�2n+2) = �2n+3.

Therefore

�2(n+2) = BR (�2n+3) ≤ BR (�2n+1) = �2(n+1).
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Finally we obtain that both sequences �2n and �2n−1 are monotone and
bounded. Hence there exist limits in (1).

Step 2. We prove (ii). We show that  2n−1 is decreasing and  2n is
increasing. Clearly  1 ≥  3 and  1 ≤  2. By lemma 4.3 and definition of
sequence  n we obtain

 2 = BR( 1) ≤ BR( 3) =  4.

Suppose that for some n hold  2n ≤  2(n+1) and  2n−1 ≥  2n+1. By lemma
4.3 and definition of sequence  n we obtain

 2n+1 = BR ( 2n) ≥ BR ( 2n+2) =  2n+3.

Therefore

 2(n+2) = BR ( 2n+3) ≥ BR ( 2n+1) =  2(n+1).

Finally we obtain that both sequences  2n and  2n−1 are monotone and
bounded. Hence their limits exists.

Step 3. We prove (iii). Note that �2n+1 = BR(�2n). By Step 1 and by
lemma 4.4 we obtain �u = BR

(
�d
)
. By analogous reasoning we obtain the

rest of results.
Step 4. We prove (iv). By definition of ℎ∗ we know that ℎ∗ = BR (ℎ∗).

By definition of BR and �n and  n we immediately obtain

�1 ≤ BR(ℎ∗) = ℎ∗ ≤  1. (12)

Assume that for some n holds

�2n−1 ≤ ℎ∗ ≤  2n−1. (13)

Note that

�2n+1 = BR (BR(�2n−1)) and  2n+1 = BR (BR( 2n−1)) . (14)

Moreover, by (12) and lemma (4.3) we obtain

BR (BR(ℎ∗)) = ℎ∗ (15)

Observe that by lemma 4.3 function BR ∘BR(⋅) is increasing. Hence, com-
bining (12), (13), (14) we obtain

 2n+1 = BR (BR( 2n−1)) ≥ BR (BR(ℎ∗)) ,

= ℎ∗,

= BR (BR(ℎ∗)) ≥ BR (BR(�2n−1)) ,

= �2n+3. (16)

To finish the proof we just take a limit in (16).
Step 5. Proof of (v) is immediate from theorem 3.1 and from (iv).
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4.2 Proofs in the model with separated variables utility and
absorbing state

By assumptions 2 and assumption of theorem 3.3 the objective becomes:

U(c, l;ℎ, s) := u1(c) + u2(l) + �(ℎ, s)(g1(s− c) + g2(1− l)),

with �(ℎ, s) :=
∫
K

v(ℎ1(y), ℎ2(y))�(dy∣s).

Proof of theorem 3.3: Let P be a set of bounded, Borel measurable func-
tions p : K → R+with a pointwise partial order and the sup norm. Clearly
P is a normal solid cone. Define an operator T : P → P:

T (p)(s) =

∫
K

v(cp(s
′), lp(s

′))�(ds′∣s),

where (cp(s), lp(s)) is a measurable solution (refer to Brown and Purves
(1973) theorem 2) of optimization problem of the function

H(c, l; p, s) := u1(c) + u2(l) + p(s)(g1(s− c) + g2(1− l)).

Clearly H has decreasing differences in (c, l) and p, hence by Topkis (1978)
theorem (cp, lp) is decreasing. By assumption 1 T (⋅) is decreasing.

Now we show that the function J(t) := t�T (tp) t ∈ (0, 1) is increasing for
each p ∈ Int (P) and � from 4. Showing continuity of J at t=1 we obtain
that T (tp) ≤ t−�T (p), i.e. the e-convexity condition for T in theorem 3.2.5
of Guo, Cho, and Zhu (2004). Fix p from interior of P and s ∈ K ∖ {0}.
Define c(t) := ctp and l(t) := ltp.

Step 1. First note that by u′i(0
+) = g′i(0

+) = ∞ (i = 1, 2) for t ∈ (0, 1)
we have (c(t), l(t)) ∈ Int(A(s)).

Hence the equalities are satisfied

H(1)(c(t), l(t); tp(s), s) = u′1(c(t))− tp(s)g′1(s− c(t)) = 0

and
H(2)(c(t), l(t); tp(s), s) = u′2(l(t))− tp(s)g′2(1− l(t)) = 0.

By implicit function theorem both c(t) and l(t) are differentiable and:

−c′(t) =
p(s)g′1(s− c(t)

− (u′′1(c(t)) + tp(s)g′′1(s− c(t)))
,

and

−l′(t) =
p(s)g′2(1− l(t))

− (u′′2(l) + tp(s)g′′2(1− l(t)))
.

Then we have
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− d

dt
v(c(t), l(t)) = −v(1)(c(t), l(t))c′(t)− v(2)(c(t), l(t))l′(t),

= v(1)(c(t), l(t))
p(s)g′1(s− c(t))

− (u′′1(c(t)) + tp(s)g′′1(s− c(t)))
,

+ v(2)(c(t), l(t))
p(s)g′2(1− l(t))

− (u′′2(l(t)) + g′′2(1− l(t)))
,

=
1

t

v(1)(c(t),l(t))
v(c(t),l(t))

u′′1 (c(t))
u′1(c(t))

+
g′′1 (s−c(t))
g′1(s−c(t))

v(c(t), l(t)),

+
1

t

v(2)(c(t),l(t))
v(c(t),l(t))

u′′2 (l(t))
u′2(l(t))

+
g′′2 (1−l(t))
g′2(1−l(t))

v(c(t), l(t)),

≤ �

t
v(c(t), l(t)) ≤ �

t
v(s, 1). (17)

The last inequality follows directly from 4. Hence if c(t, s) := c(t) then
the derivative of v(c(t, s), l(t, s)) is integrable with respect to probabilistic
measure �(⋅∣s) since v(s, 1) is integrable by assumption 2. Hence by (17)
and (4) we obtain:

t
∂

∂t

⎛⎝∫
K

v(c(t, s′), l(t, s′))�(ds′∣s)

⎞⎠ = t

∫
K

∂

∂t
v(c(t, s′), l(t, s′))�(ds′∣s)

≥ −�
∫
K

v(c(t, s), l(t, s))�(ds′∣s)

= −�T (tp).

Therefore,

J ′(t) = t�−1

⎛⎝�T (tp) + t

⎛⎝∫
K

∂

∂t
v(c(t, s′), l(t, s′))�(ds′∣s)

⎞⎠⎞⎠
≥ t�−1 (�T (tp)− �T (tp))

= 0.

Hence J(t) is increasing on (0, 1). Since J is continuous, J is decreas-
ing on all [0, 1]. Hence by Guo, Cho, and Zhu (2004) we obtain that T
posses unique fixed point say p∗. Moreover, each sequence of iterations
pn+1 = T (pn) (with p0 arbitrary starting point) converges to p∗. Hence
there exists unique ℎ∗ := (c∗, l∗) such that p∗(s) =

∫
K

v(c∗(s′∗(s′))�(ds′∣s),
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where the pair (c∗(s), l∗(s)) solves optimization problem of the function
(c, l) → H(c, l; p∗, s). Moreover, (c∗, l∗) is a unique perfect equilibrium.
Obviously 'n → ℎ∗ (refer to Kall (1986) theorem 2).

4.3 Proofs in the model without absorbing state

We now turn to a transition without an absorbing state (see assumption 3).
By assumptions 1 and 3 the objective becomes:

U(c, l;ℎ, s) := u(c, l) + �(ℎ, s)g(s− c, 1− l) + (ℎ, s),

with �(ℎ, s) :=
∫
K

v(ℎ1(y), ℎ2(y))�1(dy∣s) −
∫
K

v(ℎ1(y), ℎ2(y))�2(dy∣s), and

(ℎ, s) :=
∫
K

v(ℎ1(y), ℎ2(y))�2(dy∣s).

Define G(c, l;�, , s) := u(c, l) + �g(s − c, 1 − l) +  with � ∈ R and
 ∈ R+. We start with some preliminary lemmas.

Lemma 4.5 For each � ∈ R,  ∈ R+ and s ∈ K the function (c, l) →
G(c, l;�, , s) has a unique maximum.

Proof of lemma 4.5 Since G(⋅, ⋅;�, , s) is continuous on A(s), hence the
set of maximization problem must be nonempty. We show that optimal so-
lution is unique. If � ≥ 0 then we obtain uniqueness of optimal solution,
since in this case G(⋅, ⋅;�, , s) is strictly concave. If � < 0 by assumption 3
we obtain unique solution as well. Moreover it is (s, 1).

Lemma 4.6 Let �n → � and n → . Let ℎn = arg max(c,l)∈A(s)G(c, l;�n, n, s)
and ℎ = arg max(c,l)∈A(s)G(c, l;�, , s). Then ℎn → ℎ.

Proof of lemma 4.6 Since A(s) is compact from each sequence contained
in A(s) we can choose convergent subsequence. Hence without loss of gen-
erality we can assume that ℎn → ℎo where ℎo is some point in A(s). Then
for arbitrary (c, l) ∈ A(s) we have

G(ℎn1 , ℎ
n
2 ;�n, n, s) ≥ G(c, l;�n, n, s).

Taking a limit as n→∞ we obtain

G(ℎo1, ℎ
o
2;�, , s) ≥ G(c, l;�, , s).

Hence ℎo = arg max(c,l)∈A(s)G(c, l;�, , s). By definition of ℎ we obtain that
ℎ = ℎo.

Proof of theorem 3.4: By lemma 4.5 and assumption 1 we immediately
obtain that there is unique optimal solution of maximization problem of
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U(c, l; ℎ̄, s). Hence we have shown that ℬℛ : D → D. Moreover, the image of
ℬℛ is contained in D i.e. ℬℛ(D) ⊂ D. Now we show that ℬℛ is continuous
in the weak-star topology. Let ℎ̄n → ℎ̄ in the weak star topology. Note that
if a = (c, l) then for each s ∈ K the function

wk(s
′, a) := v(a)�k(s

′, s),

is a Caratheodory function. Hence

�(ℎ̄n, s)→ �(ℎ̄, s) as n→∞,

and
(ℎ̄n, s)→ (ℎ̄, s) as n→∞,

and hence U(c, l; ℎ̄n, s) → U(c, l; ℎ̄, s). By lemma 4.6 optimal solution
of U(c, l; ℎ̄n, s) must converge to the optimal solution of U(c, l; ℎ̄, s). Hence
there ℬℛ(ℎ̄n) → ℬℛ(ℎ̄) pointwise and hence in the weak star topology.
Hence ℬℛ is continuous. Therefore by Schauder-Tikhonov theorem we con-
clude that there exists a fixed point ℎ∗ = ℬℛ(ℎ∗) � a.e. Let ℎo := ℬℛ(ℎ∗)
pointwise. Since ℬℛ : D →D, hence ℎo must be a stationary strategy. Since
ℎo = ℎ∗ � a.e. by definition of the functions �(ℎ, s) and (ℎ, s) we conclude
that �(ℎ∗, s) = �(ℎo, s) and (ℎ∗, s) = (ℎo, s) for each s ∈ K and hence
for each (c, l) we have U(c, l;ℎo, s) = U(c, l;ℎ∗, l). Hence ℎo = ℎ∗ for each
s ∈ K and ℎ∗(s) = ℬℛ(ℎ∗)(s) for each s ∈ K. Finally to show continuity of
a MPNE follow the reasoning in the proof of corollary 1.

Proof of theorem 3.5: Let (c∗, l∗) be given MPE. For a transition proba-
bility Q(⋅∣s−c∗(s), 1−l∗(s), s) let us define a corresponding Markov operator
H : C(K)→ C(K)as

H(f)(s) := g(s− c∗(s), 1− l∗(s))
∫
K

f(s′)�1(ds
′∣s)

+(1− g(s− c∗(s), 1− l∗(s)))
∫
K

f(s′)�2(ds
′).

Observe that operator H is stable hence Q(⋅∣s − c∗(s), 1 − l∗(s), s) has a
Feller property. We now show that H is also quasi-compact7. To see that
let us also define an operator L:

L(f)(s) := (1− g(s− c∗(s), 1− l∗(s)))
∫
K

f(s′)�2(ds
′).

7Endow C(K) with the sup norm. An operator H : C(K) → C(K) is said to be
quasi-compact if there exists a natural number n and a compact operator L such that
∣∣Hn − L∣ ∣ < 1
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in C(K). Endow C(K) with the sup norm and denote a unit ball in C(K)
by ℬ. Note that:

L (ℬ) =

⎧⎨⎩(1− g(s− c∗(s), 1− l∗(s)))
∫
K

f(s′)�2(ds
′) : f ∈ ℬ

⎫⎬⎭ .

Note that

L (ℬ) = {(1− g(s− c∗(s), 1− l∗(s)))� :∈ [0, 1]} .

is the compact set. Hence L is a compact operator. Then:

∣H(f)(s)− L(f)(s)∣ =

∣∣∣∣∣∣g(s− c∗(s), 1− l∗(s))
∫
K

f(s′)�1(ds
′∣s)

∣∣∣∣∣∣ ,
≤ g(s− c∗(s), 1− l∗(s))

∫
K

∣∣f(s′)
∣∣�1(ds′∣s),

≤ sup
s∈K

g(s, 1) < 1.

This completes that H is quasi-compact. Finally applying theorem 3.3 from
Futia (1982) we get that H is equicontinuous. We take arbitrary element
s0 ∈ supp(�2). Then U" := (s0 − ", s0 + ") ∩ Int(supp(�2)) ∕= ∅ for all ".
Hence Q(U"∣s− c∗(s), 1− l∗(s)) > 0. Hence Q satisfies uniqueness criterion
2.11 in Futia (1982) . Therefore thesis of this theorem follows directly from
his theorem 2.12.
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Klein, P., P. Krusell, and J.-V. Ŕıos-Rull (2008): “Time-Consistent
Public Policies,” Review of Economic Studies, 75, 789–808.

Kohlberg, E. (1976): “A model of economic growth with altruism between
generations,” Journal of Economic Theory, 13, 1–13.

Krusell, P., and A. Smith (2003): “Consumption–Savings Decisions with
Quasi–Geometric Discounting,” Econometrica, 71(1), 365–375.

Kydland, F., and E. Prescott (1977): “Rules Rather Than Discretion:
The Inconsistency of Optimal Plans,” Journal of Political Economy, 85(3),
473–91.

(1980): “Dynamic optimal taxation, rational expectations and op-
timal control,” Journal of Economic Dynamics and Control, 2(1), 79–91.

Leader, S. (1982): “Uniformly Contractive Fixed Points in Compact Metric
Spaces,” Proceedings of the American Mathematical Society, 86(1), 153–
158.

33



Leininger, W. (1986): “The existence of perfect equilibria in model of
growth with altruism between generations,” Review of Economic Studies,
53(3), 349–368.

Levhari, D., and L. Mirman (1980): “The great fish war: an example us-
ing a dynamic Cournot-Nash solution,” Bell Journal of Economics, 11(1),
322–334.

Magill, M., and M. Quinzii (2009): “The probability approach to general
equilibrium with production,” Economic Theory, 39(1), 1–41.

Marcet, A., and R. Marimon (2009): “Recursive Contracts,” Economics
working papers, European University Institute, Revised version.

Nowak, A. S. (2006): “On perfect equilibria in stochastic models of growth
with intergenerational altruism,” Economic Theory, 28, 73–83.

(2007): “On stochastic games in economics,” Mathematical Methods
of Operations Research, Vol. 66(no 3), 513–530.

Pearce, D., and E. Stacchetti (1997): “Time Consistent Taxation by
a Government with Redistributive Goals,” Journal of Economic Theory,
72(2), 282–305.

Peleg, B., and M. E. Yaari (1973): “On the Existence of a Consistent
Course of Action when Tastes are Changing,”Review of Economic Studies,
40(3), 391–401.

Phelan, C., and E. Stacchetti (2001): “Sequantial equilibria in a Ram-
sey tax model,” Econometrica, 69(6), 1491–1518.

Phelps, E., and R. Pollak (1968): “On second best national savings and
game equilibrium growth,” Review of Economic Studies, 35, 195–199.

Rustichini, A. (1998): “Dynamic Programming Solution of Incentive Con-
strained Problems,” Journal of Economic Theory, 78(2), 329–354.

Sleet, C. (1998): “Recursive models of Government Policy,” Ph.D. thesis,
Stanford.

Sleet, C., and S. Yeltekin (2003): “On the Approximation of Value
Correspondences,” mimeo.

Topkis, D. M. (1978): “Minimazing a submodular function on a lattice,”
Operations Research, 26(2), 305–321.

Warga, J. (1972): Optimal control of differential and functional equations.
New York: Academic Press.

34


	Introduction and related literature
	Economy and its model
	Existence and approximation of MPNE
	Proofs
	Proofs in the model with absorbing state
	Proofs in the model with separated variables utility and absorbing state
	Proofs in the model without absorbing state

	References

